Pythonの数学モジュール:統計
Pythonのstatistics
モジュールは、生物統計やビジネス分析などのデータの全体的な特性を迅速に理解できるように、強力なデータ統計分析機能を提供します。データポイントを1つずつ見る代わりに、平均や分散などの統計を見て、無視される可能性のある元のデータの傾向と機能を発見し、大きなデータセットをより簡単かつ効果的に比較してください。
このチュートリアルでは、平均を計算し、データセットの分散の程度を測定する方法を説明します。特に明記されていない限り、このモジュールのすべての関数は、単に平均を合計するのではなく、mean()
関数を使用して平均値の計算をサポートします。 浮動小数点数も使用できます。
import random import statistics from fractions import Fraction as F int_values = [random.randrange(100) for x in range(9)] frac_values = [F(1, 2), F(1, 3), F(1, 4), F(1, 5), F(1, 6), F(1, 7), F(1, 8), F(1, 9)] mix_values = [*int_values, *frac_values] print(statistics.mean(mix_values)) # 929449/42840 print(statistics.fmean(mix_values)) # 21.69582166199813
およびgeometric_mean(data, weights=None)
harmonic_mean(data, weights=None)
幾何平均は、データ内のすべてのn値の積をn電力のルートに分割した結果です。浮動ポイントエラーのため、結果は場合によってはわずかに偏っている可能性があります。幾何平均の1つの応用は、複合年間成長率を迅速に計算することです。たとえば、企業の4年間の売上はそれぞれ100、120、150、および200です。 3年の成長率は、それぞれ20%、25%、33.33%でした。企業の平均売上成長率は、割合の幾何平均としてより正確に表現されます。算術平均は、常に間違った成長率を与えます。
高調波平均は、データの逆数の算術平均の逆数です。データにゼロまたは負の数が含まれている場合、
import statistics growth_rates = [20, 25, 33.33] print(statistics.mean(growth_rates)) # 26.11 print(statistics.geometric_mean(growth_rates)) # 25.542796263143476
StatisticsError
高調波平均は、平均速度、密度、または並列抵抗の計算など、比率と速度の平均を計算するために使用されます。次のコードは、誰かが固定距離を移動すると平均速度を計算します(ここに100 kmです)。
同じ頻度の発生頻度を持つ複数の値がある場合、Python 3.8の
import statistics speeds = [30, 40, 60] distance = 100 total_distance = len(speeds) * distance total_time = 0 for speed in speeds: total_time += distance / speed average_speed = total_distance / total_time print(average_speed) # 39.99999999999999 print(statistics.harmonic_mean(speeds)) # 40.0
multimode()
import statistics favorite_pet = ['cat', 'dog', 'dog', 'mouse', 'cat', 'cat', 'turtle', 'dog'] print(statistics.multimode(favorite_pet)) # ['cat', 'dog']
モードで中心値を計算することは誤解を招く可能性があります。前述のように、データセット内の他の値に関係なく、モードは常に最も頻繁なデータポイントです。中心位置を決定するもう1つの方法は、関数を使用して特定のデータセットの母集団の分散を計算することです。
この関数の2番目のパラメーターはオプションです。mu pvariance(data, mu=None)
の値が提供されている場合、指定されたデータの平均に等しくなければなりません。この値が欠落している場合、平均は自動的に計算されます。この関数は、母集団全体の分散を計算する場合に役立ちます。データが単なる母集団のサンプルである場合、
は特定のサンプルの平均です。これは、提供されていない場合に自動的に計算されます。
母集団標準偏差とサンプル標準偏差は、それぞれvariance(data, xBar=None)
とxBar
関数を使用して計算できます。
import random import statistics from fractions import Fraction as F int_values = [random.randrange(100) for x in range(9)] frac_values = [F(1, 2), F(1, 3), F(1, 4), F(1, 5), F(1, 6), F(1, 7), F(1, 8), F(1, 9)] mix_values = [*int_values, *frac_values] print(statistics.mean(mix_values)) # 929449/42840 print(statistics.fmean(mix_values)) # 21.69582166199813
概要 このシリーズの最後のチュートリアルでは、
モジュールで提供されるさまざまな機能を学びました。関数に提供されたデータがほとんどの場合にソートされていることに気付いたかもしれませんが、ソートする必要はありません。このチュートリアルでは、並べ替えられたリストを使用しました。なぜなら、異なる機能と入力データによって返される値の関係を理解しやすくするためです。以上がPythonの数学モジュール:統計の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化
