Pythonの数学モジュール:小数および分数
最も基本的な数学操作でさえ、間違った結果をもたらすことがあります。これは、特定の数値の正確な値を保存する際の制限によるものです。 Pythonのdecimal
モジュールを使用して、これらの制限を克服できます。同様に、以前のチュートリアルで学んだmath
およびcmath
モジュールは、分数ベースの算術操作を実行するのに役立ちません。ただし、pythonのfractions
モジュールはたまたまそれを行います。
このチュートリアルでは、これら2つのモジュールと提供するさまざまな機能を紹介します。
10進数モジュールを使用してfrom decimal import Decimal Decimal(121) # 返回 Decimal('121') Decimal(0.05) # 返回 Decimal('0.05000000000000000277555756') Decimal('0.05') # 返回 Decimal('0.05') Decimal((0, (8, 3, 2, 4), -3)) # 返回 Decimal('8.324') Decimal((1, (8, 3, 2, 4), -1)) # 返回 Decimal('-832.4')
関数の値は、計算の精度、丸めルール、および例外を上げる動作を決定します。 getcontext()
関数を使用して、計算の現在のコンテキストを取得して設定できます。 setcontext()
ステートメントを使用して、計算のコンテキストを一時的に変更します。 with
数値オーバーフロー、無効な動作、およびゼロによる分割に関連する例外はありません。 ROUND_HALF_UP
は、ほぼすべての例外を有効にします。これはデバッグに最適ですが、ROUND_HALF_EVEN
は計算のデフォルトコンテキストとして使用されます。 ROUND_HALF_EVEN
DefaultContext
以下は、さまざまなコンテキストを使用して単純な分割のために異なる結果を得る方法の例です。
BasicContext
DefaultContext
さまざまなコンテキストの精度と丸めアルゴリズムの違いに注目することに加えて、
であることを観察することもできます。
import decimal from decimal import ROUND_DOWN, ROUND_UP, Decimal as D dec_a = D('0.153') dec_b = D('0.231') zero = D('0') print("无上下文(使用默认值): ", dec_a/dec_b) # 无上下文(使用默认值): 0.6623376623376623376623376623 decimal.setcontext(decimal.BasicContext) print("基本上下文: ", dec_a/dec_b) # 基本上下文: 0.662337662 decimal.setcontext(decimal.ExtendedContext) print("扩展上下文: ", dec_a/dec_b) # 扩展上下文: 0.662337662 print("扩展上下文: ", dec_b/zero) # 扩展上下文: Infinity decimal.setcontext(decimal.DefaultContext) print("默认上下文: ", dec_a/dec_b) # 默认上下文: 0.6623376623376623376623376623 with decimal.localcontext() as l_ctx: l_ctx.prec = 5 l_ctx.rounding = ROUND_UP print("局部上下文: ", dec_a/dec_b) # 局部上下文: 0.66234
ExtendedContext
Infinity
の多くの関数は、コンテキストオブジェクトをパラメーターとして受け入れて、計算を実行します。これにより、計算されたコンテキストまたは精度の値の設定を絶えず避けることができます。
分数モジュールを使用してdecimal
import decimal from decimal import Decimal as D print(D('22').sqrt(decimal.BasicContext)) # 4.69041576 print(D('22').sqrt(decimal.ExtendedContext)) # 4.69041576 print(D('22').sqrt(decimal.DefaultContext)) # 4.690415759823429554565630114 with decimal.localcontext() as l_ctx: l_ctx.prec = 5 print(D('22').sqrt(l_ctx)) # 4.6904
作成スコアを作成
fractions
インスタンスを作成できます。
モジュールのように、浮動小数点数から画分を作成する際には、このモジュールにいくつかの問題があります。ここにいくつかの例があります:
fractions
画分の算術演算Fraction
decimal
加算や減算など、通常の数値などの画分で簡単な数学操作を実行することもできます。
from decimal import Decimal Decimal(121) # 返回 Decimal('121') Decimal(0.05) # 返回 Decimal('0.05000000000000000277555756') Decimal('0.05') # 返回 Decimal('0.05') Decimal((0, (8, 3, 2, 4), -3)) # 返回 Decimal('8.324') Decimal((1, (8, 3, 2, 4), -1)) # 返回 Decimal('-832.4')
ポートフォームおよび分母関数
モジュールには、limit_denominator(max_denominator)
などのいくつかの重要な方法もあります。この方法では、与えられた分数に最も近い分数を見つけて返すことができます。また、max_denominator
属性を使用して、特定の画分の分子(最低項として表される)とnumerator
属性を返すこともできます。分母を返すこともできます。 denominator
import decimal from decimal import ROUND_DOWN, ROUND_UP, Decimal as D dec_a = D('0.153') dec_b = D('0.231') zero = D('0') print("无上下文(使用默认值): ", dec_a/dec_b) # 无上下文(使用默认值): 0.6623376623376623376623376623 decimal.setcontext(decimal.BasicContext) print("基本上下文: ", dec_a/dec_b) # 基本上下文: 0.662337662 decimal.setcontext(decimal.ExtendedContext) print("扩展上下文: ", dec_a/dec_b) # 扩展上下文: 0.662337662 print("扩展上下文: ", dec_b/zero) # 扩展上下文: Infinity decimal.setcontext(decimal.DefaultContext) print("默认上下文: ", dec_a/dec_b) # 默认上下文: 0.6623376623376623376623376623 with decimal.localcontext() as l_ctx: l_ctx.prec = 5 l_ctx.rounding = ROUND_UP print("局部上下文: ", dec_a/dec_b) # 局部上下文: 0.66234
このモジュールを使用して、
モジュールにさまざまな関数を使用して、分数ベースの計算を実行することもできます。 math
import decimal from decimal import Decimal as D print(D('22').sqrt(decimal.BasicContext)) # 4.69041576 print(D('22').sqrt(decimal.ExtendedContext)) # 4.69041576 print(D('22').sqrt(decimal.DefaultContext)) # 4.690415759823429554565630114 with decimal.localcontext() as l_ctx: l_ctx.prec = 5 print(D('22').sqrt(l_ctx)) # 4.6904
これら2つのモジュールは、小数点と分数の一般的な操作を実行するのに十分なものである必要があります。前回のセクションに示すように、これらのモジュールを
モジュールで使用して、希望する形式のさまざまな数学関数の値を計算できます。 math
このシリーズの次のチュートリアルでは、pythonの
以上がPythonの数学モジュール:小数および分数の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
