ホームページ バックエンド開発 Python チュートリアル Pythonを使用してファイルで単語頻度をカウントします

Pythonを使用してファイルで単語頻度をカウントします

Mar 06, 2025 am 11:59 AM

このチュートリアルは、Pythonを使用して単語頻度を分析することにより、ドキュメントのメイントピックをすばやく決定する方法を示しています。 手動での単語の発生を数えることは退屈です。この自動化されたアプローチは、プロセスを簡素化します

サンプルテキストファイル

(ダウンロードしますが、覗かないでください!)を使用して説明します。 目標は、単語の頻度に基づいてチュートリアルの主題を推測することです。 test.txt

正規表現の理解このプロセスでは、正規表現(正規表現)を使用します。 なじみのない場合、正規表現は、文字列マッチングの検索パターンを定義する文字シーケンスです(「検索と置換」など)。 より深いダイビングについては、専用の正規表現チュートリアルを参照してください。 プログラムの構築

ファイルを読む:

プログラムは、テキストファイルを文字列に読み取ることから始まります:
  1. 正規表現:
    document_text = open('test.txt', 'r')
    text_string = document_text.read().lower()
    ログイン後にコピー
    3〜15文字の正規表現をフィルターします:
  2. 単語周波数:
    match_pattern = re.findall(r'\b[a-z]{3,15}\b', text_string)
    ログイン後にコピー
    辞書は単語の周波数を追跡します:
  3. output:
    frequency = {}
    for word in match_pattern:
        count = frequency.get(word, 0)
        frequency[word] = count + 1
    ログイン後にコピー
    プログラムは、各単語とその頻度を印刷します。
  4. 完全なプログラム

    frequency_list = frequency.keys()
    for word in frequency_list:
        print(word, frequency[word])
    ログイン後にコピー
  5. ここに合わせたPythonコードがあります:

これを実行すると、単語周波数リストが出力されます。 最も頻繁な言葉は、元のチュートリアルのトピックを示唆しています。

import re

frequency = {}
document_text = open('test.txt', 'r')
text_string = document_text.read().lower()
match_pattern = re.findall(r'\b[a-z]{3,15}\b', text_string)

for word in match_pattern:
    count = frequency.get(word, 0)
    frequency[word] = count + 1

frequency_list = frequency.keys()
for word in frequency_list:
    print(word, frequency[word])
ログイン後にコピー
大きなテキストファイルの処理

大きなファイルの場合、周波数辞書をソートすると、最も頻繁な単語を見つけることが簡素化されます。 Counting Word Frequency in a File Using Python

これはソートされたリストを出力し、最も頻繁な単語が最初に表示されます。

一般的な単語を除外します

import re

frequency = {}
document_text = open('dracula.txt', 'r')  # Example: dracula.txt
text_string = document_text.read().lower()
match_pattern = re.findall(r'\b[a-z]{3,15}\b', text_string)

for word in match_pattern:
    count = frequency.get(word, 0)
    frequency[word] = count + 1

most_frequent = dict(sorted(frequency.items(), key=lambda elem: elem[1], reverse=True))
most_frequent_count = most_frequent.keys()

for word in most_frequent_count:
    print(word, most_frequent[word])
ログイン後にコピー
これにより、より焦点の整った分析が提供されます。

Counting Word Frequency in a File Using Python

この拡張されたPythonスクリプトは、単語の頻度に基づいてテキストを分析し、重要なトピックを識別するための堅牢な方法を提供します。 特定のニーズに合わせて、ブラックリストと単語の長さの基準を適応させることを忘れないでください。

以上がPythonを使用してファイルで単語頻度をカウントしますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングのためのPython:詳細な外観 科学コンピューティングのためのPython:詳細な外観 Apr 19, 2025 am 12:15 AM

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発用のPython:主要なアプリケーション Web開発用のPython:主要なアプリケーション Apr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

See all articles