O3-MINIは論理的な推論のためにDeepSeek-R1を置き換えることができますか?
AI駆動の推論モデルは、2025年に世界を席巻しています! DeepSeek-R1とO3-Miniの発売により、AIチャットボットでは前例のないレベルの論理推論機能が見られました。この記事では、これらのモデルにAPIを介してアクセスし、論理的推論スキルを評価して、O3-MINIがDeepSeek-R1を置き換えることができるかどうかを調べます。標準のベンチマークでのパフォーマンスを比較し、論理パズルの解決やテトリスゲームの構築などの実際のアプリケーションを比較します!バックルして乗り心地に参加してください。
目次
- deepseek-r1 vs o3-mini:論理的推論ベンチマーク
- deepseek-r1 vs o3-mini:api価格の比較
- deepseek-r1およびo3-miniにアクセスする方法比較
- タスク1:テトリスゲームの構築
- タスク2:リレーショナル不平等の分析
- タスク3:数学の論理的推論
- 論理的推論の比較概要deepseek-r1 vs o3-mini:論理的推論ベンチマーク
ソース:livebench.ai
ベンチマークの結果は、OpenaiのO3-Miniが、数学を除くほぼすべての側面でDeepSeek-R1を上回ることを示しています。 Deepseekの71.38と比較して、世界平均スコアは73.94であるため、O3-Miniは全体的なパフォーマンスがわずかに強いことを示しています。特に推論に優れており、Deepseekの83.17に対して89.58を達成し、優れた分析および問題解決機能を反映しています。 また読む:Google Gemini 2.0 Pro vs Deepseek-R1:コーディングは誰ですか?
deepseek-r1 vs o3-mini:API価格の比較 これらのモデルをAPIを通じてテストしているので、これらのモデルの費用を見てみましょう。
Model | Context length | Input Price | Cached Input Price | Output Price |
o3-mini | 200k | .10/M tokens | .55/M tokens | .40/M tokens |
deepseek-chat | 64k | .27/M tokens | .07/M tokens | .10/M tokens |
deepseek-reasoner | 64k | .55/M tokens | .14/M tokens | .19/M tokens |
ソース:deepseek-r1 | o3-mini
deepseek-r1およびo3-miniにアクセスする方法
ハンズオンパフォーマンスの比較に足を踏み入れる前に、APIを使用してDeepSeek-R1およびO3-Miniにアクセスする方法を学びましょう。
あなたがこれのためにしなければならないのは、必要なライブラリとAPIキーをインポートすることだけです:
from openai import OpenAI from IPython.display import display, Markdown import time
with open("path_of_api_key") as file: openai_api_key = file.read().strip()
with open("path_of_api_key") as file: deepseek_api = file.read().strip()
APIアクセスを取得したので、論理的推論機能に基づいてDeepSeek-R1とO3-Miniを比較しましょう。このために、両方のモデルに同じプロンプトを提供し、これらのメトリックに基づいてそれらの応答を評価します:
モデルが回答を生成するために時間をかける時間
-
生成された応答の品質、および
- 応答を生成するために発生した コスト。
- その後、パフォーマンスに応じて、各タスクのモデル0または1をスコアリングします。それでは、タスクを試して、deepseek-r1 vs o3-mini推論戦で勝者として誰が現れるかを見てみましょう!
- タスク1:テトリスゲームの構築
deepseek-r1 api への入力 DeepSeek-R1
による 応答
INPUT_COST_CACHE_HIT = 0.14 / 1_000_000 # <pre class="brush:php;toolbar:false">task1_start_time = time.time() client = OpenAI(api_key=api_key) messages = messages=[ { "role": "system", "content": """You are a professional Programmer with a large experience .""" }, { "role": "user", "content": """write a python code for this problem: generate a python code for Tetris game. """ } ] # Use a compatible encoding (cl100k_base is the best option for new OpenAI models) encoding = tiktoken.get_encoding("cl100k_base") # Calculate token counts input_tokens = sum(len(encoding.encode(msg["content"])) for msg in messages) completion = client.chat.completions.create( model="o3-mini-2025-01-31", messages=messages ) output_tokens = len(encoding.encode(completion.choices[0].message.content)) task1_end_time = time.time() input_cost_per_1k = 0.0011 # Example: <pre class="brush:php;toolbar:false">INPUT_COST_CACHE_HIT = 0.14 / 1_000_000 # <pre class="brush:php;toolbar:false">task2_start_time = time.time() client = OpenAI(api_key=api_key) messages = [ { "role": "system", "content": """You are an expert in solving Reasoning Problems. Please solve the given problem""" }, { "role": "user", "content": """In the following question, assuming the given statements to be true, find which of the conclusions among given conclusions is/are definitely true and then give your answers accordingly. Statements: H > F ≤ O ≤ L; F ≥ V < D Conclusions: I. L ≥ V II. O > D The options are: A. Only I is true B. Only II is true C. Both I and II are true D. Either I or II is true E. Neither I nor II is true """ } ] # Use a compatible encoding (cl100k_base is the best option for new OpenAI models) encoding = tiktoken.get_encoding("cl100k_base") # Calculate token counts input_tokens = sum(len(encoding.encode(msg["content"])) for msg in messages) completion = client.chat.completions.create( model="o3-mini-2025-01-31", messages=messages ) output_tokens = len(encoding.encode(completion.choices[0].message.content)) task2_end_time = time.time() input_cost_per_1k = 0.0011 # Example: <pre class="brush:php;toolbar:false">INPUT_COST_CACHE_HIT = 0.14 / 1_000_000 # <pre class="brush:php;toolbar:false">task3_start_time = time.time() client = OpenAI(api_key=api_key) messages = [ { "role": "system", "content": """You are a Expert in solving Reasoning Problems. Please solve the given problem""" }, { "role": "user", "content": """ Study the given matrix carefully and select the number from among the given options that can replace the question mark (?) in it. __________________ | 7 | 13 | 174| | 9 | 25 | 104| | 11 | 30 | ? | |_____|_____|____| The options are: A 335 B 129 C 431 D 100 Please mention your approch that you have taken at each step """ } ] # Use a compatible encoding (cl100k_base is the best option for new OpenAI models) encoding = tiktoken.get_encoding("cl100k_base") # Calculate token counts input_tokens = sum(len(encoding.encode(msg["content"])) for msg in messages) completion = client.chat.completions.create( model="o3-mini-2025-01-31", messages=messages ) output_tokens = len(encoding.encode(completion.choices[0].message.content)) task3_end_time = time.time() input_cost_per_1k = 0.0011 # Example: .005 per 1,000 input tokens output_cost_per_1k = 0.0044 # Example: .015 per 1,000 output tokens # Calculate cost input_cost = (input_tokens / 1000) * input_cost_per_1k output_cost = (output_tokens / 1000) * output_cost_per_1k total_cost = input_cost + output_cost # Print results print(completion.choices[0].message) print("----------------=Total Time Taken for task 3:----------------- ", task3_end_time - task3_start_time) print(f"Input Tokens: {input_tokens}, Output Tokens: {output_tokens}") print(f"Estimated Cost: ${total_cost:.6f}") # Display result from IPython.display import Markdown display(Markdown(completion.choices[0].message.content))
DeepSeek-R1の完全な応答をここで見つけることができます。
出力トークンコスト:
入力トークン:28 |出力トークン:3323 |推定コスト:0.0073ドル
コード出力
o3-mini api
への入力以上がO3-MINIは論理的な推論のためにDeepSeek-R1を置き換えることができますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











メタのラマ3.2:マルチモーダルとモバイルAIの前進 メタは最近、ラマ3.2を発表しました。これは、モバイルデバイス向けに最適化された強力なビジョン機能と軽量テキストモデルを特徴とするAIの大幅な進歩です。 成功に基づいてo

ねえ、忍者をコーディング!その日はどのようなコーディング関連のタスクを計画していますか?このブログにさらに飛び込む前に、コーディング関連のすべての問題について考えてほしいです。 終わり? - &#8217を見てみましょう

今週のAIの風景:進歩、倫理的考慮、規制の議論の旋風。 Openai、Google、Meta、Microsoftのような主要なプレーヤーは、画期的な新しいモデルからLEの重要な変化まで、アップデートの急流を解き放ちました

Shopify CEOのTobiLütkeの最近のメモは、AIの能力がすべての従業員にとって基本的な期待であると大胆に宣言し、会社内の重大な文化的変化を示しています。 これはつかの間の傾向ではありません。これは、pに統合された新しい運用パラダイムです

導入 Openaiは、待望の「Strawberry」アーキテクチャに基づいて新しいモデルをリリースしました。 O1として知られるこの革新的なモデルは、推論能力を強化し、問題を通じて考えられるようになりました

導入 鮮やかな絵画や彫刻に囲まれたアートギャラリーを歩くことを想像してください。さて、各ピースに質問をして意味のある答えを得ることができたらどうでしょうか?あなたは尋ねるかもしれません、「あなたはどんな話を言っていますか?

私のコラムに新しいかもしれない人のために、具体化されたAI、AI推論、AIのハイテクブレークスルー、AIの迅速なエンジニアリング、AIのトレーニング、AIのフィールディングなどのトピックなど、全面的なAIの最新の進歩を広く探求します。

SQLの変更テーブルステートメント:データベースに列を動的に追加する データ管理では、SQLの適応性が重要です。 その場でデータベース構造を調整する必要がありますか? Alter Tableステートメントはあなたの解決策です。このガイドの詳細は、コルを追加します
