ウィンドウ関数は 5 日間のアクティブ期間のリセットでユーザーのアクティブ化ステータスをどのように識別できますか?
Spark ウィンドウ関数を使用して複雑な条件のユーザー アクティビティを定義する
この例では、Spark ウィンドウ関数を使用して、以降のログイン時にリセットされる 5 日間のアクティブ期間を考慮して、ユーザーのアクティブ化ステータスを判断する方法を示します。 ユーザー ログインの DataFrame が与えられ、各ユーザーがいつアクティブになったかを示す列を追加することを目的としています。
方法論: ウィンドウ関数の活用
私たちのアプローチはウィンドウ関数を使用して、アクティブステータスのリセットをトリガーするログインイベントを特定します。 ユーザーおよび日付別にログインを順序付けるウィンドウが作成されます。 このウィンドウを遅らせると、現在と以前のログイン時間を比較できるようになります。
import org.apache.spark.sql.expressions.Window import org.apache.spark.sql.functions._ val window = Window.partitionBy("user_name").orderBy("login_date") val df2 = df.withColumn("previous_login", lag("login_date", 1).over(window))
アクティブステータスのリセットへの対処
became_active
の日付は、前回のログイン ( previous_login
) が 5 日間のアクティブ期間内にあるかどうかを確認することによって決定されます。 previous_login
が null (初回ログイン) または時差 (login_date
- previous_login
) が 5 日未満の場合、became_active
は現在の login_date
に設定されます。それ以外の場合、プロセスはこの条件が満たされるまで再帰的に続行されます。
Spark の実装 (バージョン >= 3.2)
Spark 3.2 以降ではネイティブ セッション ウィンドウ サポートが提供され、このタスクが簡素化されています (詳細については公式ドキュメントを参照してください)。
Spark の実装 (古いバージョン)
古い Spark バージョンの場合は、次の回避策が必要です。
- ユーザーのパーティショニングとセッション識別のためのウィンドウを定義します:
val userWindow = Window.partitionBy("user_name").orderBy("login_date") val userSessionWindow = Window.partitionBy("user_name", "session")
- ログインギャップに基づいてセッションの開始ポイントを特定します:
val newSession = (coalesce( datediff($"login_date", lag($"login_date", 1).over(userWindow)), lit(0) ) > 5).cast("bigint")
- セッション化されたデータフレームを作成し、各セッション内の最も早いログイン日を見つけます:
val sessionized = df.withColumn("session", sum(newSession).over(userWindow)) val result = sessionized .withColumn("became_active", min($"login_date").over(userSessionWindow)) .drop("session")
出力例
次の出力は、サンプル データセットを使用した結果を示しています。
<code>+----------------+----------+-------------+ | user_name|login_date|became_active| +----------------+----------+-------------+ | OprahWinfreyJr|2012-01-10| 2012-01-10| |SirChillingtonIV|2012-01-04| 2012-01-04| |SirChillingtonIV|2012-01-11| 2012-01-11| |SirChillingtonIV|2012-01-14| 2012-01-11| |SirChillingtonIV|2012-08-11| 2012-08-11| |Booooooo99900098|2012-01-04| 2012-01-04| |Booooooo99900098|2012-01-06| 2012-01-04| +----------------+----------+-------------+</code>
以上がウィンドウ関数は 5 日間のアクティブ期間のリセットでユーザーのアクティブ化ステータスをどのように識別できますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











WebアプリケーションにおけるMySQLの主な役割は、データを保存および管理することです。 1.MYSQLは、ユーザー情報、製品カタログ、トランザクションレコード、その他のデータを効率的に処理します。 2。SQLクエリを介して、開発者はデータベースから情報を抽出して動的なコンテンツを生成できます。 3.MYSQLは、クライアントサーバーモデルに基づいて機能し、許容可能なクエリ速度を確保します。

INNODBは、レドログと非論的なものを使用して、データの一貫性と信頼性を確保しています。 1.レドログは、クラッシュの回復とトランザクションの持続性を確保するために、データページの変更を記録します。 2.Undologsは、元のデータ値を記録し、トランザクションロールバックとMVCCをサポートします。

他のプログラミング言語と比較して、MySQLは主にデータの保存と管理に使用されますが、Python、Java、Cなどの他の言語は論理処理とアプリケーション開発に使用されます。 MySQLは、データ管理のニーズに適した高性能、スケーラビリティ、およびクロスプラットフォームサポートで知られていますが、他の言語は、データ分析、エンタープライズアプリケーション、システムプログラミングなどのそれぞれの分野で利点があります。

MySQLインデックスのカーディナリティは、クエリパフォーマンスに大きな影響を及ぼします。1。高いカーディナリティインデックスは、データ範囲をより効果的に狭め、クエリ効率を向上させることができます。 2。低カーディナリティインデックスは、完全なテーブルスキャンにつながり、クエリのパフォーマンスを削減する可能性があります。 3。ジョイントインデックスでは、クエリを最適化するために、高いカーディナリティシーケンスを前に配置する必要があります。

MySQLの基本操作には、データベース、テーブルの作成、およびSQLを使用してデータのCRUD操作を実行することが含まれます。 1.データベースの作成:createdatabasemy_first_db; 2。テーブルの作成:createTableBooks(idintauto_incrementprimarykey、titlevarchary(100)notnull、authorvarchar(100)notnull、published_yearint); 3.データの挿入:InsertIntoBooks(タイトル、著者、公開_year)VA

MySQLは、Webアプリケーションやコンテンツ管理システムに適しており、オープンソース、高性能、使いやすさに人気があります。 1)PostgreSQLと比較して、MySQLは簡単なクエリと高い同時読み取り操作でパフォーマンスが向上します。 2)Oracleと比較して、MySQLは、オープンソースと低コストのため、中小企業の間でより一般的です。 3)Microsoft SQL Serverと比較して、MySQLはクロスプラットフォームアプリケーションにより適しています。 4)MongoDBとは異なり、MySQLは構造化されたデータおよびトランザクション処理により適しています。

Innodbbufferpoolは、データをキャッシュしてページをインデックス作成することにより、ディスクI/Oを削減し、データベースのパフォーマンスを改善します。その作業原則には次のものが含まれます。1。データ読み取り:Bufferpoolのデータを読む。 2。データの書き込み:データを変更した後、bufferpoolに書き込み、定期的にディスクに更新します。 3.キャッシュ管理:LRUアルゴリズムを使用して、キャッシュページを管理します。 4.読みメカニズム:隣接するデータページを事前にロードします。 BufferPoolのサイジングと複数のインスタンスを使用することにより、データベースのパフォーマンスを最適化できます。

MySQLは、テーブル構造とSQLクエリを介して構造化されたデータを効率的に管理し、外部キーを介してテーブル間関係を実装します。 1.テーブルを作成するときにデータ形式と入力を定義します。 2。外部キーを使用して、テーブル間の関係を確立します。 3。インデックス作成とクエリの最適化により、パフォーマンスを改善します。 4.データベースを定期的にバックアップおよび監視して、データのセキュリティとパフォーマンスの最適化を確保します。
