PostgreSQL でサブクエリを使用して連続する数値をグループ化および集計する方法
PostgreSQL のサブクエリを使用した連続数値のグループ化と集計
数値データを含むテーブルを扱う場合、多くの場合、順序に従って値をグループ化して集計する必要があります。 PostgreSQL 9.0 以降では、サブクエリの組み合わせを使用してこれを実現できます。
非連続値を識別する
最初のステップは、対象の数値フィールド内の連続しない値を特定することです。これは、各行にグループ カウントを割り当て、非連続値が発生したときにカウンターをリセットするサブクエリを使用して実行できます。
SELECT company, profession, year, CASE WHEN row_number() OVER (PARTITION BY company, profession ORDER BY year) = 1 OR year - lag(year, 1, year) OVER (PARTITION BY company, profession ORDER BY year) > 1 THEN 1 ELSE 0 END AS group_cnt FROM qualification;
グループ ID を定義します
次に、連続する値のシーケンスごとにグループ ID を作成します。これには、前のサブクエリからのグループ数を合計する別のサブクエリが含まれます。
SELECT company, profession, year, SUM(group_cnt) OVER (ORDER BY company, profession, year) AS group_nr FROM ( SELECT company, profession, year, CASE WHEN row_number() OVER (PARTITION BY company, profession ORDER BY year) = 1 OR year - lag(year, 1, year) OVER (PARTITION BY company, profession ORDER BY year) > 1 THEN 1 ELSE 0 END AS group_cnt FROM qualification ) t1;
最終集計
最後に、グループ ID を使用して各グループの値を集計します。
SELECT company, profession, array_agg(year) AS years FROM ( SELECT company, profession, year, SUM(group_cnt) OVER (ORDER BY company, profession, year) AS group_nr FROM ( SELECT company, profession, year, CASE WHEN row_number() OVER (PARTITION BY company, profession ORDER BY year) = 1 OR year - lag(year, 1, year) OVER (PARTITION BY company, profession ORDER BY year) > 1 THEN 1 ELSE 0 END AS group_cnt FROM qualification ) t1 ) t2 GROUP BY company, profession, group_nr ORDER BY company, profession, group_nr;
このクエリは、番号順に基づいて配列にグループ化された年の値を含む、一意の会社と職業の組み合わせを含むテーブルを返します。 この方法は、連続する数値シーケンスを効果的にグループ化し、その後の分析と処理を容易にします。
以上がPostgreSQL でサブクエリを使用して連続する数値をグループ化および集計する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











WebアプリケーションにおけるMySQLの主な役割は、データを保存および管理することです。 1.MYSQLは、ユーザー情報、製品カタログ、トランザクションレコード、その他のデータを効率的に処理します。 2。SQLクエリを介して、開発者はデータベースから情報を抽出して動的なコンテンツを生成できます。 3.MYSQLは、クライアントサーバーモデルに基づいて機能し、許容可能なクエリ速度を確保します。

他のプログラミング言語と比較して、MySQLは主にデータの保存と管理に使用されますが、Python、Java、Cなどの他の言語は論理処理とアプリケーション開発に使用されます。 MySQLは、データ管理のニーズに適した高性能、スケーラビリティ、およびクロスプラットフォームサポートで知られていますが、他の言語は、データ分析、エンタープライズアプリケーション、システムプログラミングなどのそれぞれの分野で利点があります。

MySQLの基本操作には、データベース、テーブルの作成、およびSQLを使用してデータのCRUD操作を実行することが含まれます。 1.データベースの作成:createdatabasemy_first_db; 2。テーブルの作成:createTableBooks(idintauto_incrementprimarykey、titlevarchary(100)notnull、authorvarchar(100)notnull、published_yearint); 3.データの挿入:InsertIntoBooks(タイトル、著者、公開_year)VA

Innodbbufferpoolは、データをキャッシュしてページをインデックス作成することにより、ディスクI/Oを削減し、データベースのパフォーマンスを改善します。その作業原則には次のものが含まれます。1。データ読み取り:Bufferpoolのデータを読む。 2。データの書き込み:データを変更した後、bufferpoolに書き込み、定期的にディスクに更新します。 3.キャッシュ管理:LRUアルゴリズムを使用して、キャッシュページを管理します。 4.読みメカニズム:隣接するデータページを事前にロードします。 BufferPoolのサイジングと複数のインスタンスを使用することにより、データベースのパフォーマンスを最適化できます。

MySQLは、テーブル構造とSQLクエリを介して構造化されたデータを効率的に管理し、外部キーを介してテーブル間関係を実装します。 1.テーブルを作成するときにデータ形式と入力を定義します。 2。外部キーを使用して、テーブル間の関係を確立します。 3。インデックス作成とクエリの最適化により、パフォーマンスを改善します。 4.データベースを定期的にバックアップおよび監視して、データのセキュリティとパフォーマンスの最適化を確保します。

MySQLは、データストレージ、管理、分析に適した強力なオープンソースデータベース管理システムであるため、学習する価値があります。 1)MySQLは、SQLを使用してデータを操作するリレーショナルデータベースであり、構造化されたデータ管理に適しています。 2)SQL言語はMySQLと対話するための鍵であり、CRUD操作をサポートします。 3)MySQLの作業原則には、クライアント/サーバーアーキテクチャ、ストレージエンジン、クエリオプティマイザーが含まれます。 4)基本的な使用には、データベースとテーブルの作成が含まれ、高度な使用にはJoinを使用してテーブルの参加が含まれます。 5)一般的なエラーには、構文エラーと許可の問題が含まれ、デバッグスキルには、構文のチェックと説明コマンドの使用が含まれます。 6)パフォーマンスの最適化には、インデックスの使用、SQLステートメントの最適化、およびデータベースの定期的なメンテナンスが含まれます。

MySQLは、初心者がデータベーススキルを学ぶのに適しています。 1.MySQLサーバーとクライアントツールをインストールします。 2。selectなどの基本的なSQLクエリを理解します。 3。マスターデータ操作:テーブルを作成し、データを挿入、更新、削除します。 4.高度なスキルを学ぶ:サブクエリとウィンドウの関数。 5。デバッグと最適化:構文を確認し、インデックスを使用し、選択*を避け、制限を使用します。

MySQLでは、外部キーの機能は、テーブル間の関係を確立し、データの一貫性と整合性を確保することです。外部キーは、参照整合性チェックとカスケード操作を通じてデータの有効性を維持します。パフォーマンスの最適化に注意し、それらを使用するときに一般的なエラーを避けてください。
