C# で `IEnumerable` と `IEnumerator` を使用すると、どのようにして効率的な反復が可能になりますか?
C# の IEnumerable
と IEnumerator
の深い理解: 効率的な反復のための強力なツール
ソフトウェア開発では、オブジェクト コレクションを効率的に反復することが重要です。 .NET Framework は、このための 2 つの主要なインターフェイス、IEnumerable
と IEnumerator
を提供します。
IEnumerable
インターフェース
IEnumerable
インターフェイスはオブジェクトのコレクションを表します。 GetEnumerator()
オブジェクトを返す単一のメソッド IEnumerator
を定義します。要素の反復を許可するクラスであれば、このインターフェイスを実装できます。
IEnumerator
インターフェース
IEnumerator
インターフェイスは列挙子を表します。列挙子は、オブジェクトのコレクションを反復処理するために使用できるオブジェクトです。 MoveNext()
と Current()
という 2 つのメソッドが定義されています。 MoveNext()
列挙子をコレクション内の次の要素に進め、反復子がコレクションの最後に到達したかどうかを示すブール値を返します。 Current()
コレクション内の現在の要素を返します。
IEnumerable
および foreach
ステートメントの使用法
IEnumerable
は通常、C# の foreach
ステートメントと組み合わせて使用されます。 foreach
ステートメントは、オブジェクトのコレクションを反復処理するための簡潔で便利な方法を提供します。コンパイラは、コレクション オブジェクトの GetEnumerator()
メソッドを自動的に呼び出し、結果の IEnumerator
オブジェクトを使用してその要素を反復処理します。
IEnumerable
と IEnumerator
を使用する理由
効率: IEnumerable
および IEnumerator
は、コレクション全体をメモリにロードすることを回避することで、効率的な反復を可能にします。これらは、コレクションの要素に 1 つずつアクセスするメカニズムを提供するため、メモリのオーバーヘッドが削減され、パフォーマンスが向上します。
拡張性: IEnumerable
および IEnumerator
は標準インターフェースであり、どのクラスでも実装できます。これにより、開発者は、内部実装に関係なく、一貫した方法で簡単に反復できるカスタム クラスを作成できます。
使用例
次の例を考えてみましょう:
using System; using System.Collections.Generic; public class MyCollection : IEnumerable<int> { private List<int> _data = new List<int>(); public IEnumerator<int> GetEnumerator() { foreach (int item in _data) { yield return item; } } IEnumerator IEnumerable.GetEnumerator() { return GetEnumerator(); } public void Add(int value) { _data.Add(value); } } public class Example { public static void Main(string[] args) { MyCollection myCollection = new MyCollection(); myCollection.Add(1); myCollection.Add(2); myCollection.Add(3); foreach (int item in myCollection) { Console.WriteLine(item); } } }
この例では、MyCollection
クラスは IEnumerable<int>
を実装し、その要素を反復するカスタム列挙子を定義します。 foreach
ステートメントはコレクションを反復処理し、要素をコンソールに出力できるようになります。
以上がC# で `IEnumerable` と `IEnumerator` を使用すると、どのようにして効率的な反復が可能になりますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











C#とCの歴史と進化はユニークであり、将来の見通しも異なります。 1.Cは、1983年にBjarnestrostrupによって発明され、オブジェクト指向のプログラミングをC言語に導入しました。その進化プロセスには、C 11の自動キーワードとラムダ式の導入など、複数の標準化が含まれます。C20概念とコルーチンの導入、将来のパフォーマンスとシステムレベルのプログラミングに焦点を当てます。 2.C#は2000年にMicrosoftによってリリースされました。CとJavaの利点を組み合わせて、その進化はシンプルさと生産性に焦点を当てています。たとえば、C#2.0はジェネリックを導入し、C#5.0は非同期プログラミングを導入しました。これは、将来の開発者の生産性とクラウドコンピューティングに焦点を当てます。

C#とCおよび開発者の経験の学習曲線には大きな違いがあります。 1)C#の学習曲線は比較的フラットであり、迅速な開発およびエンタープライズレベルのアプリケーションに適しています。 2)Cの学習曲線は急勾配であり、高性能および低レベルの制御シナリオに適しています。

Cでの静的分析の適用には、主にメモリ管理の問題の発見、コードロジックエラーの確認、およびコードセキュリティの改善が含まれます。 1)静的分析では、メモリリーク、ダブルリリース、非初期化ポインターなどの問題を特定できます。 2)未使用の変数、死んだコード、論理的矛盾を検出できます。 3)カバー性などの静的分析ツールは、バッファーオーバーフロー、整数のオーバーフロー、安全でないAPI呼び出しを検出して、コードセキュリティを改善します。

Cは、サードパーティライブラリ(TinyXML、PUGIXML、XERCES-Cなど)を介してXMLと相互作用します。 1)ライブラリを使用してXMLファイルを解析し、それらをC処理可能なデータ構造に変換します。 2)XMLを生成するときは、Cデータ構造をXML形式に変換します。 3)実際のアプリケーションでは、XMLが構成ファイルとデータ交換に使用されることがよくあり、開発効率を向上させます。

CでChronoライブラリを使用すると、時間と時間の間隔をより正確に制御できます。このライブラリの魅力を探りましょう。 CのChronoライブラリは、時間と時間の間隔に対処するための最新の方法を提供する標準ライブラリの一部です。 Time.HとCtimeに苦しんでいるプログラマーにとって、Chronoは間違いなく恩恵です。コードの読みやすさと保守性を向上させるだけでなく、より高い精度と柔軟性も提供します。基本から始めましょう。 Chronoライブラリには、主に次の重要なコンポーネントが含まれています。STD:: Chrono :: System_Clock:現在の時間を取得するために使用されるシステムクロックを表します。 STD :: Chron

Cの将来は、並列コンピューティング、セキュリティ、モジュール化、AI/機械学習に焦点を当てます。1)並列コンピューティングは、コルーチンなどの機能を介して強化されます。 2)セキュリティは、より厳格なタイプのチェックとメモリ管理メカニズムを通じて改善されます。 3)変調は、コード組織とコンパイルを簡素化します。 4)AIと機械学習は、数値コンピューティングやGPUプログラミングサポートなど、CにComply Coveに適応するように促します。

c isnotdying; it'sevolving.1)c relelevantdueToitsversitileSileSixivisityinperformance-criticalApplications.2)thelanguageSlikeModulesandCoroutoUtoimveUsablive.3)despiteChallen

CのDMAとは、直接メモリアクセステクノロジーであるDirectMemoryAccessを指し、ハードウェアデバイスがCPU介入なしでメモリに直接データを送信できるようにします。 1)DMA操作は、ハードウェアデバイスとドライバーに大きく依存しており、実装方法はシステムごとに異なります。 2)メモリへの直接アクセスは、セキュリティリスクをもたらす可能性があり、コードの正確性とセキュリティを確保する必要があります。 3)DMAはパフォーマンスを改善できますが、不適切な使用はシステムのパフォーマンスの低下につながる可能性があります。実践と学習を通じて、DMAを使用するスキルを習得し、高速データ送信やリアルタイム信号処理などのシナリオでその効果を最大化できます。
