ホームページ バックエンド開発 Python チュートリアル Python を使用した DynamoDB への効率的なバッチ書き込み: ステップバイステップガイド

Python を使用した DynamoDB への効率的なバッチ書き込み: ステップバイステップガイド

Jan 08, 2025 am 06:49 AM

Efficient Batch Writing to DynamoDB with Python: A Step-by-Step Guide

このガイドでは、大規模なデータセットに焦点を当て、Python を使用して AWS DynamoDB に効率的にデータを挿入する方法を示します。 テーブルの作成 (必要な場合)、ランダム データの生成、および最適なパフォーマンスとコスト削減のためのバッチ書き込みについて説明します。 boto3 ライブラリは必須です。 pip install boto3.

を使用してインストールします。

1. DynamoDB テーブルのセットアップ:

まず、AWS セッションを確立し、DynamoDB テーブルのリージョンを定義します。

import boto3
from botocore.exceptions import ClientError

dynamodb = boto3.resource('dynamodb', region_name='us-east-1')
table_name = 'My_DynamoDB_Table_Name'
ログイン後にコピー

create_table_if_not_exists() 関数はテーブルの存在を確認し、存在しない場合は主キー (id) を使用してテーブルを作成します。

def create_table_if_not_exists():
    try:
        table = dynamodb.Table(table_name)
        table.load()
        print(f"Table '{table_name}' exists.")
        return table
    except ClientError as e:
        if e.response['Error']['Code'] == 'ResourceNotFoundException':
            print(f"Creating table '{table_name}'...")
            table = dynamodb.create_table(
                TableName=table_name,
                KeySchema=[{'AttributeName': 'id', 'KeyType': 'HASH'}],
                AttributeDefinitions=[{'AttributeName': 'id', 'AttributeType': 'S'}],
                ProvisionedThroughput={'ReadCapacityUnits': 5, 'WriteCapacityUnits': 5}
            )
            table.meta.client.get_waiter('table_exists').wait(TableName=table_name)
            print(f"Table '{table_name}' created.")
            return table
        else:
            print(f"Error: {e}")
            raise
ログイン後にコピー

2.ランダムデータ生成:

idnametimestamp、および value を使用してサンプル レコードを生成します。

import random
import string
from datetime import datetime

def generate_random_string(length=10):
    return ''.join(random.choices(string.ascii_letters + string.digits, k=length))

def generate_record():
    return {
        'id': generate_random_string(16),
        'name': generate_random_string(8),
        'timestamp': str(datetime.utcnow()),
        'value': random.randint(1, 1000)
    }
ログイン後にコピー

3.データ一括書き込み:

batch_write() 関数は、効率的な一括挿入 (バッチあたり最大 25 アイテム) のために DynamoDB の batch_writer() を利用します。

def batch_write(table, records):
    with table.batch_writer() as batch:
        for record in records:
            batch.put_item(Item=record)
ログイン後にコピー

4.主なワークフロー:

メイン関数は、テーブルの作成、データ生成、バッチ書き込みを調整します。

def main():
    table = create_table_if_not_exists()
    records_batch = []
    for i in range(1, 1001):
        record = generate_record()
        records_batch.append(record)
        if len(records_batch) == 25:
            batch_write(table, records_batch)
            records_batch = []
            print(f"Wrote {i} records")
    if records_batch:
        batch_write(table, records_batch)
        print(f"Wrote remaining {len(records_batch)} records")

if __name__ == '__main__':
    main()
ログイン後にコピー

5.結論:

このスクリプトはバッチ書き込みを活用して、大量のデータに対する DynamoDB の対話を最適化します。 特定のニーズに合わせてパラメータ (バッチ サイズ、レコード数など) を必ず調整してください。 さらにパフォーマンスを向上させるために、高度な DynamoDB 機能を検討することを検討してください。

以上がPython を使用した DynamoDB への効率的なバッチ書き込み: ステップバイステップガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:比較されたアプリケーションとユースケース Python vs. C:比較されたアプリケーションとユースケース Apr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間でどのくらいのPythonを学ぶことができますか? 2時間でどのくらいのPythonを学ぶことができますか? Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

2時間のPython計画:現実的なアプローチ 2時間のPython計画:現実的なアプローチ Apr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Python:主要なアプリケーションの調査 Python:主要なアプリケーションの調査 Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

See all articles