ホームページ バックエンド開発 Python チュートリアル 動的リアルタイム データ ダッシュボードを構築するための ython ライブラリ

動的リアルタイム データ ダッシュボードを構築するための ython ライブラリ

Jan 07, 2025 pm 06:16 PM

ython Libraries for Building Dynamic Real-Time Data Dashboards

私の Amazon の本を読んだり、Medium で私をフォローして、データサイエンスの洞察をさらに深めてください!ご支援をよろしくお願いいたします!

データ分析と視覚化における Python の機能は否定できません。 リアルタイム ダッシュボードの構築は、今日のデータ主導の世界をナビゲートするデータ サイエンティストにとって重要なスキルです。この記事では、動的でインタラクティブなダッシュボードの作成に最適な 7 つの強力な Python ライブラリについて説明します。

Dash は、Web ベースの分析アプリケーションに私が推奨するライブラリです。 Flask、Plotly.js、React.js を活用して、応答性の高いコンポーネントを備えたダッシュボードの堅牢な基盤を提供します。 ライブ更新グラフを表示する基本的な Dash アプリケーションを以下に示します。

import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.express as px
import pandas as pd

app = dash.Dash(__name__)

app.layout = html.Div([
    dcc.Graph(id='live-update-graph'),
    dcc.Interval(
       # ... (rest of the code)
ログイン後にコピー
ログイン後にコピー

このコードは、新しいデータ ポイントを組み込んで毎秒更新される散布図を生成します。 Dash のコールバック メカニズムにより、ユーザー入力やデータ変更に反応するインタラクティブな要素の作成が簡素化されます。

Bokeh は、インタラクティブなプロットとダッシュボード用のもう 1 つの優れたライブラリであり、特にストリーミング データに適しています。その強みは、大規模なデータセットの処理とリンクされたプロットの作成にあります。 以下は、リアルタイム ストリーミング プロットを示す Bokeh サーバー アプリケーションです。

from bokeh.plotting import figure, curdoc
from bokeh.driving import linear
import random

# ... (rest of the code)
ログイン後にコピー
ログイン後にコピー

このコードは、新しいランダム データで 100 ミリ秒ごとに更新される折れ線グラフを生成します。 Bokeh のサーバーは、リアルタイムの更新と対話性を容易にします。

Streamlit は、ダッシュボードの迅速なプロトタイピングと展開に人気があります。ユーザーフレンドリーな API により、インタラクティブな Web アプリケーションの作成が簡素化されます。 リアルタイムの折れ線グラフを生成する単純な Streamlit アプリを以下に示します。

import streamlit as st
import pandas as pd
import numpy as np

# ... (rest of the code)
ログイン後にコピー

このコードは、ランダムなデータ ポイントを継続的に追加する折れ線グラフを作成します。 Streamlit の自動再実行機能は、リアルタイムのビジュアライゼーション開発を効率化します。

Panel は、さまざまな視覚化ライブラリのプロットを組み合わせてダッシュボードを作成することに優れています。 これは、Matplotlib、Bokeh、および Plotly のビジュアライゼーションを統合する場合に特に役立ちます。 Matplotlib と Bokeh プロットを含むパネル ダッシュボードの例は次のとおりです。

import panel as pn
import matplotlib.pyplot as plt
from bokeh.plotting import figure

# ... (rest of the code)
ログイン後にコピー

このコードは、Matplotlib プロットと Bokeh プロットが垂直に配置されたダッシュボードを表示します。パネルの柔軟性により、複雑なレイアウトやインタラクティブなウィジェットの作成が簡素化されます。

Plotly は、インタラクティブな出版品質のグラフを生成するのに最適です。 その Plotly Express API は、簡潔なコードによる複雑なビジュアライゼーションの作成を簡素化します。アニメーション化された Plotly Express 散布図の例は次のとおりです:

import plotly.express as px
import pandas as pd

# ... (rest of the code)
ログイン後にコピー

このコードは、さまざまな国の一人当たり GDP と平均余命の長期的な関係を示すアニメーション散布図を生成します。

Flask-SocketIO は、リアルタイムの双方向通信により Web ベースのダッシュボードを強化します。これは、サーバーからクライアントにリアルタイムでデータをプッシュする場合に特に役立ちます。 ランダム データをクライアントに送信する単純な Flask-SocketIO アプリケーションは次のとおりです。

import dash
from dash import dcc, html
from dash.dependencies import Input, Output
import plotly.express as px
import pandas as pd

app = dash.Dash(__name__)

app.layout = html.Div([
    dcc.Graph(id='live-update-graph'),
    dcc.Interval(
       # ... (rest of the code)
ログイン後にコピー
ログイン後にコピー

このコードは、ランダム データをクライアントに毎秒送信する Flask-SocketIO サーバーを作成します。 このデータを受信して​​表示するには、JavaScript を含む付随の HTML テンプレートが必要です。

HoloViz (旧名 PyViz) は、Python でのデータの視覚化を簡素化します。 HoloViews、GeoViews、Datashader などのライブラリが含まれており、リンクされたビジュアライゼーションを備えた複雑なダッシュボードを作成できます。 HoloViews を使用した例を次に示します:

from bokeh.plotting import figure, curdoc
from bokeh.driving import linear
import random

# ... (rest of the code)
ログイン後にコピー
ログイン後にコピー

このコードは、インタラクティブなサイン曲線とコサイン曲線を含むレイアウトを作成します。

パフォーマンスの最適化とレスポンシブデザインのベストプラクティス:

特に大規模なデータセットで最適なパフォーマンスを得るには、効率的なデータ構造、データ キャッシュ、非同期プログラミング、データ集約、WebSocket 接続、データベース クエリの最適化、遅延読み込み、堅牢なエラー処理を考慮してください。

応答性の高いユーザー インターフェースの場合、応答性の高いデザイン原則、読み込みインジケーター、デバウンス/スロットリング、ページネーション/無限スクロール、効率的なクライアント側レンダリング、最適化された JavaScript コードを採用します。

要約すると、これら 7 つの Python ライブラリは、リアルタイム データ ダッシュボードを構築するための強力なツールを提供します。 最適な選択は、特定のニーズによって異なります。 これらのライブラリを組み合わせてベスト プラクティスを実装することで、効率的でユーザー フレンドリーなリアルタイム データ ダッシュボードを作成できます。これは、今日のデータ中心の世界では貴重なスキルです。


101 冊

(このセクションは記事の技術的な内容に直接関係しないため、変更されません。)


私たちは中程度です

(このセクションは記事の技術的な内容に直接関係しないため、変更されません。)

以上が動的リアルタイム データ ダッシュボードを構築するための ython ライブラリの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Web開発用のPython:主要なアプリケーション Web開発用のPython:主要なアプリケーション Apr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

See all articles