ホームページ バックエンド開発 Python チュートリアル OpenAI JSONL 形式の理解: レコードの整理

OpenAI JSONL 形式の理解: レコードの整理

Jan 04, 2025 pm 08:44 PM

Understanding the OpenAI JSONL Format: Organising the Records

郵便サービスの郵便物仕分けの初期の頃、シックス・トリプル・エイトは、返送された手紙が無効としてマークされるという課題に直面しました。これは多くの場合、このような膨大な量のメールを処理する経験がなかったことに起因するエラーが原因でした。時間をかけて、名前を連隊や階級と照合する革新的なインデックス システムを開発し、効率と精度を大幅に向上させました。

同様に、OpenAI の大規模言語モデル (LLM) を使用する場合、必要な入力形式を理解し、それに従うことが重要です。メールのインデックス付けが不適切だと手紙が返送されるのと同じように、データの形式が不適切だと、微調整が効果的でなく、最適とは言えない結果が生じる可能性があります。 OpenAI は、微調整のための組織フレームワークとして JSONL (JSON Lines) 形式を使用し、データが構造化されて処理の準備が整っていることを確認します。

JSONL 形式を使用する理由

JSONL 形式では、データを行ごとの構造で保存でき、各行が JSON 形式の単一レコードを表します。この構造はコンパクトで読みやすく、OpenAI の微調整 API と互換性があります。適切なフォーマットにより、次のことが保証されます。

  • 精度: モデルは意図したとおりにデータを処理し、エラーを回避します。

  • 効率: 一貫した構造により、微調整がシームレスになります。

  • スケーラビリティ: 複雑な構成を必要とせずに、大規模なデータセットを効果的に管理できます。

微調整用の JSONL 形式の例

OpenAI モデルを微調整するためにデータが JSONL でフォーマットされる一般的な方法は次のとおりです。

 openai_format = {
        "message":[
            {"role":"system","content":system},
            {"role":"user","content":""},
            {"role":"assistant","content":""}
        ]
    }
ログイン後にコピー

各レコードには 3 つの主要なコンポーネントがあります:

  • システム: プロンプトが必要です

  • user: サンプルデータ。

  • アシスタント: データのラベル

変換しましょう

import  json
df = pd.read_csv('/content/dataset/train.csv', on_bad_lines='skip')

final_df = df.head(150)
total_tokens = cal_num_tokens_from_df(final_df,'gpt-3.5-turbo')
print(f"total {total_tokens}")


system ="You are a intelligent assistant designed to classify news articles into three categories :business ,entertainment,sport,tech,politics"
with open('dataset/train.jsonl','w') as f:
  for _,row in final_df.iterrows():
    openai_format = {
        "message":[
            {"role":"system","content":system},
            {"role":"user","content":row['text']},
            {"role":"assistant","content":row['label']}
        ]
    }
    json.dump(openai_format,f)
    f.write('\n')
ログイン後にコピー

応答サンプル

{"message": [{"role": "system", "content": "You are a intelligent assistant designed to classify news articles into three categories :business ,entertainment,sport,tech,politics"}, {"role": "user", "content": "qantas considers offshore option australian airline qantas could transfer as"}, {"role": "assistant", "content": "business"}]}
ログイン後にコピー

シックス・トリプル・エイトからの教訓

シックス・トリプル・エイトの郵便処理における初期の課題は、準備と学習の重要性を浮き彫りにしています。彼らのインデックス作成の革新により、JSONL 形式に準拠することで微調整により効果的で正確な結果が得られるのと同様に、レコードが正しく照合され、配信されることが保証されました。

LLM を微調整する場合、データを理解し、正しい形式で構造化することは、メールの仕分け技術を習得するためのシックス トリプル エイトの旅と同じくらい重要です。歴史とテクノロジーの両方から学ぶことで、複雑な物流上の課題を解決する上で目覚ましい成果を上げることができます。

以上がOpenAI JSONL 形式の理解: レコードの整理の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:比較されたアプリケーションとユースケース Python vs. C:比較されたアプリケーションとユースケース Apr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間のPython計画:現実的なアプローチ 2時間のPython計画:現実的なアプローチ Apr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間でどのくらいのPythonを学ぶことができますか? 2時間でどのくらいのPythonを学ぶことができますか? Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:主要なアプリケーションの調査 Python:主要なアプリケーションの調査 Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

See all articles