SQL Server 2000 でデータをピボットして行ベースのデータを列ベースの形式に変換するにはどうすればよいですか?
SQL Server 2000 でのデータのピボット: 詳細な説明
SQL Server 2000 は、ユーザーがデータを変換できるようにするピボットと呼ばれる強力な機能を提供します。行ベースの形式から列ベースの形式へ。これは、複数の列にわたるデータを要約したり、データのマトリックス ビューを作成したりする必要があるシナリオに役立ちます。
問題ステートメント:
ある特定のインスタンスでは、ユーザーには 2 つのテーブルがあります:
- Products: などの基本的な製品情報が含まれます。 ProductId と Name。
- Product Meta: MetaKey や MetaValue などの列を含む製品メタデータを保存します。
ユーザーは MetaValue 列をピボットする結果セットを必要としますMetaKey 列に基づいた Product Meta テーブルから。Products テーブルの ProductId 列と Name 列が行として使用されます。 headers.
最適な解決策:
この変換を実現するには、次の SQL クエリを使用できます:
SELECT P.ProductId, P.Name , MIN(CASE WHEN PM.MetaKey = 'A' THEN PM.MetaValue END) AS A , MIN(CASE WHEN PM.MetaKey = 'B' THEN PM.MetaValue END) AS B , MIN(CASE WHEN PM.MetaKey = 'C' THEN PM.MetaValue END) AS C FROM Products AS P JOIN ProductMeta AS PM ON PM.ProductId = P.ProductId GROUP BY P.ProductId, P.Name
説明:
- SELECT 句は、含める列を指定します。結果セット。
- MIN() 集計関数は、ProductId と Name の各グループ内の各 MetaKey の最小値を返すために使用されます。
- CASE 式は、どの列 ( A、B、または C) を使用して、MetaKey 値に基づいてデータを設定します。
- GROUP BY 句は、結果の行を定義する列を指定します。 set.
注:
このシナリオでは、行が正しくグループ化されていることを確認するために、GROUP BY 句の使用が不可欠です。 GROUP BY 句を使用しないと、結果がずれる可能性があります。さらに、GROUP BY 句に含まれていない各列は、集計関数 (この場合は MIN()) でラップする必要があります。
以上がSQL Server 2000 でデータをピボットして行ベースのデータを列ベースの形式に変換するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











WebアプリケーションにおけるMySQLの主な役割は、データを保存および管理することです。 1.MYSQLは、ユーザー情報、製品カタログ、トランザクションレコード、その他のデータを効率的に処理します。 2。SQLクエリを介して、開発者はデータベースから情報を抽出して動的なコンテンツを生成できます。 3.MYSQLは、クライアントサーバーモデルに基づいて機能し、許容可能なクエリ速度を確保します。

INNODBは、レドログと非論的なものを使用して、データの一貫性と信頼性を確保しています。 1.レドログは、クラッシュの回復とトランザクションの持続性を確保するために、データページの変更を記録します。 2.Undologsは、元のデータ値を記録し、トランザクションロールバックとMVCCをサポートします。

他のプログラミング言語と比較して、MySQLは主にデータの保存と管理に使用されますが、Python、Java、Cなどの他の言語は論理処理とアプリケーション開発に使用されます。 MySQLは、データ管理のニーズに適した高性能、スケーラビリティ、およびクロスプラットフォームサポートで知られていますが、他の言語は、データ分析、エンタープライズアプリケーション、システムプログラミングなどのそれぞれの分野で利点があります。

MySQLインデックスのカーディナリティは、クエリパフォーマンスに大きな影響を及ぼします。1。高いカーディナリティインデックスは、データ範囲をより効果的に狭め、クエリ効率を向上させることができます。 2。低カーディナリティインデックスは、完全なテーブルスキャンにつながり、クエリのパフォーマンスを削減する可能性があります。 3。ジョイントインデックスでは、クエリを最適化するために、高いカーディナリティシーケンスを前に配置する必要があります。

MySQLの基本操作には、データベース、テーブルの作成、およびSQLを使用してデータのCRUD操作を実行することが含まれます。 1.データベースの作成:createdatabasemy_first_db; 2。テーブルの作成:createTableBooks(idintauto_incrementprimarykey、titlevarchary(100)notnull、authorvarchar(100)notnull、published_yearint); 3.データの挿入:InsertIntoBooks(タイトル、著者、公開_year)VA

MySQLは、Webアプリケーションやコンテンツ管理システムに適しており、オープンソース、高性能、使いやすさに人気があります。 1)PostgreSQLと比較して、MySQLは簡単なクエリと高い同時読み取り操作でパフォーマンスが向上します。 2)Oracleと比較して、MySQLは、オープンソースと低コストのため、中小企業の間でより一般的です。 3)Microsoft SQL Serverと比較して、MySQLはクロスプラットフォームアプリケーションにより適しています。 4)MongoDBとは異なり、MySQLは構造化されたデータおよびトランザクション処理により適しています。

Innodbbufferpoolは、データをキャッシュしてページをインデックス作成することにより、ディスクI/Oを削減し、データベースのパフォーマンスを改善します。その作業原則には次のものが含まれます。1。データ読み取り:Bufferpoolのデータを読む。 2。データの書き込み:データを変更した後、bufferpoolに書き込み、定期的にディスクに更新します。 3.キャッシュ管理:LRUアルゴリズムを使用して、キャッシュページを管理します。 4.読みメカニズム:隣接するデータページを事前にロードします。 BufferPoolのサイジングと複数のインスタンスを使用することにより、データベースのパフォーマンスを最適化できます。

MySQLは、テーブル構造とSQLクエリを介して構造化されたデータを効率的に管理し、外部キーを介してテーブル間関係を実装します。 1.テーブルを作成するときにデータ形式と入力を定義します。 2。外部キーを使用して、テーブル間の関係を確立します。 3。インデックス作成とクエリの最適化により、パフォーマンスを改善します。 4.データベースを定期的にバックアップおよび監視して、データのセキュリティとパフォーマンスの最適化を確保します。
