Pandas DataFrame に複数の行を効率的に追加するにはどうすればよいですか?
Pandas DataFrame への複数の行の効率的な追加
データを操作するとき、行を段階的に追加する必要がある状況に遭遇するのが一般的です。既存のデータフレーム。 df._set_value() を使用して一度に 1 つのフィールドに値を設定するアプローチは実行可能ですが、複数の行を追加するには非効率的になる可能性があります。
効率的な行追加のための df.loc[i] の使用
複数の行を追加するより適切で簡潔な方法は、df.loc[i] を使用することです。その仕組みは次のとおりです:
-
必要なライブラリをインポートします:
import pandas as pd from numpy.random import randint
ログイン後にコピー -
必要な列を含む空の DataFrame を作成します:
df = pd.DataFrame(columns=['lib', 'qty1', 'qty2'])
ログイン後にコピー -
必要な数だけ繰り返します追加する行:
for i in range(5):
ログイン後にコピー -
ループ内で、df.loc[i] を使用してインデックス i の行にアクセスし、lib に必要な値 qty1 を割り当てます。と qty2 列。例:
df.loc[i] = ['name' + str(i)] + list(randint(10, size=2))
ログイン後にコピー
例:
これは、df.loc[i] を使用して 5 行を追加する方法を示す完全な例です。私たちへDataFrame:
import pandas as pd from numpy.random import randint df = pd.DataFrame(columns=['lib', 'qty1', 'qty2']) for i in range(5): df.loc[i] = ['name' + str(i)] + list(randint(10, size=2)) print(df)
Output:
lib qty1 qty2 0 name0 3 3 1 name1 2 4 2 name2 2 8 3 name3 2 1 4 name4 9 6
df.loc[i] を使用すると、DataFrame に複数の行を一度に追加する便利で効率的な方法が提供されます。 df._set_value().
を複数回呼び出す必要はありません。以上がPandas DataFrame に複数の行を効率的に追加するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
