Pandas DataFrame 列を複数の行にネスト解除するにはどうすればよいですか?
Pandas DataFrame で列を複数の行にネスト解除する方法
問題:
1 つの列に値のリストが含まれる DataFrame があり、各リスト要素をその要素に分割したいとします。
解決策:
Pandas DataFrame で列をネスト解除 (または分解) するには、いくつかのメソッドがあります:
メソッド1: 爆発を使用する (パンダ >= 0.25)
ネストを解除する列が 1 つある場合、explode 関数が最も簡単な解決策です。
df.explode('B')
方法 2: apply と pd.Series を使用する
この方法は簡単ですが、パフォーマンスの点で推奨されません理由:
df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})
方法 3:repeat と DataFrame コンストラクターを使用する
ネストされていない列に繰り返し値を含む新しい DataFrame を作成します:
df=pd.DataFrame({'A':df.A.repeat(df.B.str.len()),'B':np.concatenate(df.B.values)})
方法 4: 再インデックスを使用するか、 loc
ネストされていない値を使用して新しい DataFrame を作成し、reindex または loc を使用して元のデータフレームと位置合わせします。
df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))
方法 5: collections.ChainMap を使用する (リストに一意のものが含まれる場合値)
from collections import ChainMap d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A']))) pd.DataFrame(list(d.items()),columns=df.columns[::-1])
方法 6: Numpy を使用して高パフォーマンスを実現する
この方法は、前の方法よりも効率的です:
newvalues=np.dstack((np.repeat(df.A.values,list(map(len,df.B.values))),np.concatenate(df.B.values))) pd.DataFrame(data=newvalues[0],columns=df.columns)
方法 7: itertools.cycle とitertools.chain
楽しみのための純粋な Python ソリューション:
from itertools import cycle,chain l=df.values.tolist() l1=[list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l] pd.DataFrame(list(chain.from_iterable(l1)),columns=df.columns)
複数の列への一般化:
次の関数を使用すると、次のことが可能になります。複数の列のネストを解除するDataFrame:
def unnesting(df, explode): idx = df.index.repeat(df[explode[0]].str.len()) df1 = pd.concat([ pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1) df1.index = idx return df1.join(df.drop(explode, 1), how='left')
列方向のネスト解除:
列を水平にネスト解除する必要がある場合は、DataFrame コンストラクターの add_prefix メソッドを使用します:
df.join(pd.DataFrame(df.B.tolist(),index=df.index).add_prefix('B_'))
以上がPandas DataFrame 列を複数の行にネスト解除するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
