Pandas DataFrame のネストされたリストを別の行に展開するにはどうすればよいですか?
Pandas DataFrames のネストされたリストの解明: 行拡張
Pandas データフレームでデータを操作するとき、リストを含む列が発生する可能性があります。複数の値。分析と操作を容易にするために、これらのリストを個別の行に変換する必要があります。 「ロングフォーミング」または「行拡張」として知られるこのプロセスにより、各リスト要素が独自の行を占有することができます。
これを実現するために、Pandas は .explode() と呼ばれる専用のメソッドを提供します。 、バージョン 0.25 で導入されました。このメソッドは、指定されたリストを含む列を一連の行にシームレスに変換し、各要素が独立した行になります。
実装:
を使用するには.explode() メソッドでは、展開したい列名を指定するだけです。デフォルトでは、他のすべての列の値を保持しながら、列内の各要素に新しい行を作成します。
たとえば、値のリストを含む「samples」列を含むデータフレームを考えてみましょう。
import pandas as pd import numpy as np df = pd.DataFrame( {'trial_num': [1, 2, 3, 1, 2, 3], 'subject': [1, 1, 1, 2, 2, 2], 'samples': [list(np.random.randn(3).round(2)) for i in range(6)] } )
.explode() を適用するmethod:
df.explode('samples')
結果は次のデータフレームになります:
subject trial_num sample 0 1 1 0.57 1 1 1 -0.83 2 1 1 1.44 3 1 2 -0.01 4 1 2 1.13 5 1 2 0.36 6 2 1 -0.08 7 2 1 -4.22 8 2 1 -2.05 9 2 2 0.72 10 2 2 0.79 11 2 2 0.53
ご覧のとおり、各リスト要素には独自の行が含まれています。このメソッドはリストを効率的に展開しますが、一度に 1 つの列に対して展開することに注意してください。
追加の考慮事項:
- .explode() メソッドは、リストとスカラー値の両方を含む混合列を処理し、空のリストと NaN が確実に含まれるようにします。値は適切に保持されます。
- データフレームにリストを含む列が複数ある場合は、ネストされた .explode() 呼び出しを使用して、列を 1 つずつ展開できます。
- If特定の列の順序を指定したい場合は、呼び出し後に手動で列の順序を再調整できます。 .explode().
- 通常の整数インデックスを取得するには、.reset_index(drop=True) を使用してインデックスをリセットすることをお勧めします。
以上がPandas DataFrame のネストされたリストを別の行に展開するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
