Python 関数のパラメーターにおける裸のアスタリスクは何を意味しますか?
関数パラメータにおける裸のアスタリスクの役割を明らかにする
関数パラメータ リストの範囲内で、裸のアスタリスクは、次のように知られる顕著な区別を示します。 「キーワードのみ」のパラメータ。この構文は、呼び出し元が関数を呼び出すときに引数の名前を明示的に指定する必要があることを規定しており、事実上、位置引数の使用を禁止しています。
起源と目的
この独自の構文が登場しました。 Python 3 では、コードの明確性を高め、曖昧さを回避するメカニズムとして使用されています。キーワードのみのパラメーターを使用すると、引数名が常に存在することが保証され、エラーを引き起こす可能性がある位置の順序に依存する潜在的な落とし穴が排除されます。
構文構造
裸のアスタリスクpickle の次のスニペットに示されているように、キーワードのみのパラメーターの開始を示すために、可変数の非キーワード引数の直後に配置されます。 module:
pickle.dump(obj, file, protocol=None, *, fix_imports=True)
この例では、fix_imports は名前によって呼び出す必要があるキーワードのみの引数であり、誤って位置パラメータとして指定する可能性が低くなります。
施行と利点
インタプリタはこの構文を厳密に施行します。このルールでは、キーワード引数が前に位置パラメータなしで裸のアスタリスクの後に続く場合、SyntaxError が発行されます。この強制的な構造により、呼び出し元は引数名を注意深く指定する必要があり、コードの明瞭さが促進され、検出が困難なエラーのリスクが軽減されます。
結論
関数内の裸のアスタリスクパラメータは、キーワードのみのパラメータを定義するための重要なツールとして機能し、呼び出し元に引数名を明示的に指定するよう強制します。この構文により、コードの明確さが保証され、位置の議論に固有のあいまいさが排除され、より信頼性が高く、保守しやすく、エラーのないプログラムが実現されます。
以上がPython 関数のパラメーターにおける裸のアスタリスクは何を意味しますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。
