辞書の Pandas DataFrame 列を別の列に効率的に分割する方法は?
Pandas を使用して辞書の列を個別の列に分割する
問題の概要
作業時Pandas DataFrames では、列に辞書が含まれていることがよくあります。価値観。アクセシビリティと操作性を高めるためにディクショナリを個別の列に分割する必要があるため、これによりさらなるデータ分析が困難になる可能性があります。この問題は、辞書の長さが異なり、共有キーが含まれている場合に特に関係します。
独自のアプローチとエラー
フォーラムの投稿でユーザーが説明している DataFrame には、' 「汚染レベル」の列には辞書が含まれています。最初に、次のコードを使用してこの列を分割しようとしました:
objs = [df, pandas.DataFrame(df['Pollutant Levels'].tolist()).iloc[:, :3]] df2 = pandas.concat(objs, axis=1).drop('Pollutant Levels', axis=1)
しかし、このメソッドは範囲外のスライスにより IndexError が発生しました。
Unicode の問題
ユーザーはさらに、「汚染物質」に含まれる辞書の Unicode 形式が不正であると疑っています。レベルの列が問題の原因となっている可能性があります。これらは次の形式になります:
u{'a': '1', 'b': '2', 'c': '3'}
{u'a': '1', u'b': '2', u'c': '3'}
これらの問題に対処するには、次のアプローチを使用します。推奨:
説明import pandas as pd df['Pollutant Levels'] = df['Pollutant Levels'].apply(lambda x: dict(x)) df2 = pd.json_normalize(df['Pollutant Levels'])
コードの最初の行は、Unicode 辞書を標準辞書に変換します。 2 行目では、Pandas の json_normalize 関数を利用しています。これは、辞書の列を個別の列に変換する便利な方法を提供します。この関数は、コストのかかる適用関数の必要性を回避し、目的の DataFrame を生成します:
以上が辞書の Pandas DataFrame 列を別の列に効率的に分割する方法は?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。
