ホームページ バックエンド開発 Python チュートリアル コードを高速化するための優れた Python パフォーマンス最適化テクニック

コードを高速化するための優れた Python パフォーマンス最適化テクニック

Dec 14, 2024 am 10:53 AM

owerful Python Performance Optimization Techniques for Faster Code

私は Python 開発者として、高パフォーマンスのアプリケーションを作成するにはコードの最適化が重要であることを学びました。この記事では、実行速度とメモリ効率を向上させる実践的な方法に焦点を当て、Python コードのパフォーマンスを向上させるために私が使用した 7 つの強力なテクニックを紹介します。

ジェネレータとイテレータ

Python コードを最適化する最も効果的な方法の 1 つは、ジェネレーターとイテレーターを使用することです。これらのツールは、すべてを一度にメモリにロードせずにデータを処理できるため、大規模なデータセットを扱う場合に特に役立ちます。

メモリに収まらないほど大きすぎるシーケンスを扱う必要がある場合、私はジェネレーターをよく使用します。素数を生成するジェネレーター関数の例を次に示します。

def prime_generator():
    yield 2
    primes = [2]
    candidate = 3
    while True:
        if all(candidate % prime != 0 for prime in primes):
            primes.append(candidate)
            yield candidate
        candidate += 2
ログイン後にコピー
ログイン後にコピー

このジェネレーターを使用すると、すべての素数をメモリに保存せずに、無限の素数シーケンスを扱うことができます。次のように使用できます:

primes = prime_generator()
for _ in range(10):
    print(next(primes))
ログイン後にコピー
ログイン後にコピー

リスト内包表記とジェネレーター式

リスト内包表記とジェネレータ式は簡潔で、多くの場合、従来のループに代わる高速な代替手段です。これらは、新しいリストの作成やシーケンスの反復処理に特に役立ちます。

偶数を二乗するリスト内包表記の例を次に示します。

numbers = range(10)
squared_evens = [x**2 for x in numbers if x % 2 == 0]
ログイン後にコピー
ログイン後にコピー

大きなシーケンスの場合は、メモリを節約するためにジェネレーター式を使用することを好みます。

numbers = range(1000000)
squared_evens = (x**2 for x in numbers if x % 2 == 0)
ログイン後にコピー
ログイン後にコピー

高性能コンテナのデータ型

Python のコレクション モジュールは、コード効率を大幅に向上させるいくつかの高性能コンテナ データ型を提供します。

リストの両端からの高速な追加とポップが必要な場合は、よく deque (両端キュー) を使用します。

from collections import deque

queue = deque(['a', 'b', 'c'])
queue.append('d')
queue.appendleft('e')
ログイン後にコピー
ログイン後にコピー

Counter は、ハッシュ可能なオブジェクトをカウントするためのもう 1 つの便利なデータ型です。

from collections import Counter

word_counts = Counter(['apple', 'banana', 'apple', 'cherry'])
ログイン後にコピー
ログイン後にコピー

高速検索のためのセットと辞書

セットと辞書は内部でハッシュ テーブルを使用するため、検索やメンバーシップ テストが非常に高速になります。アイテムがコレクション内に存在するかどうかを確認する必要があるとき、またはリストから重複を削除する必要があるときは常にこれらを使用します。

メンバーシップを迅速にテストするためのセットの使用例を次に示します:

numbers = set(range(1000000))
print(500000 in numbers)  # This is much faster than using a list
ログイン後にコピー

Numba によるジャストインタイムコンパイル

数値計算の場合、Numba はジャストインタイム コンパイルを通じて速度を大幅に向上させることができます。以下は、Numba を使用してマンデルブロ集合を計算する関数を高速化する例です。

from numba import jit
import numpy as np

@jit(nopython=True)
def mandelbrot(h, w, maxit=20):
    y, x = np.ogrid[-1.4:1.4:h*1j, -2:0.8:w*1j]
    c = x + y*1j
    z = c
    divtime = maxit + np.zeros(z.shape, dtype=int)

    for i in range(maxit):
        z = z**2 + c
        diverge = z*np.conj(z) > 2**2
        div_now = diverge & (divtime == maxit)
        divtime[div_now] = i
        z[diverge] = 2

    return divtime
ログイン後にコピー

この関数は、純粋な Python の同等の関数よりも最大 100 倍高速です。

C-Speed 用 Cython

さらにスピードが必要なときは、Cython に頼ります。 Cython を使用すると、Python コードを C にコンパイルできるため、パフォーマンスが大幅に向上します。 Cython 関数の簡単な例を次に示します。

def prime_generator():
    yield 2
    primes = [2]
    candidate = 3
    while True:
        if all(candidate % prime != 0 for prime in primes):
            primes.append(candidate)
            yield candidate
        candidate += 2
ログイン後にコピー
ログイン後にコピー

この Cython 関数は、純粋な Python 実装よりも数倍高速です。

プロファイリングと最適化

最適化する前に、ボトルネックがどこにあるのかを特定することが重要です。タイミングには cProfile を、メモリ使用量の分析にはmemory_profilerを使用します。

cProfile の使用方法は次のとおりです:

primes = prime_generator()
for _ in range(10):
    print(next(primes))
ログイン後にコピー
ログイン後にコピー

メモリプロファイリングの場合:

numbers = range(10)
squared_evens = [x**2 for x in numbers if x % 2 == 0]
ログイン後にコピー
ログイン後にコピー

これらのツールは、最も影響が大きい箇所に最適化の取り組みを集中させるのに役立ちます。

functools.lru_cache によるメモ化

メモ化は、高価な関数呼び出しの結果をキャッシュするために私が使用しているテクニックです。 functools.lru_cache デコレータを使用すると、これが簡単になります。

numbers = range(1000000)
squared_evens = (x**2 for x in numbers if x % 2 == 0)
ログイン後にコピー
ログイン後にコピー

これにより、冗長な計算が回避され、再帰関数が大幅に高速化されます。

itertools を使用した効率的な反復

itertools モジュールは、イテレータを作成するための高速でメモリ効率の高いツールのコレクションを提供します。私はこれらをシーケンスの結合や順列の生成などのタスクによく使用します。

itertools.combinations の使用例を次に示します。

from collections import deque

queue = deque(['a', 'b', 'c'])
queue.append('d')
queue.appendleft('e')
ログイン後にコピー
ログイン後にコピー

パフォーマンスの高い Python コードを作成するためのベスト プラクティス

私は長年にわたり、効率的な Python コードを作成するためのいくつかのベスト プラクティスを開発してきました。

  1. ループの最適化: できるだけ多くのコードをループの外に移動するようにしています。ネストされたループの場合、内側のループが可能な限り高速になるようにします。

  2. 関数呼び出しのオーバーヘッドを減らす: 頻繁に呼び出される非常に小さな関数の場合は、インライン関数またはラムダ式の使用を検討します。

  3. 適切なデータ構造を使用する: タスクに適したデータ構造を選択します。たとえば、メンバーシップの高速テストにはセットを使用し、キーと値の高速検索には辞書を使用します。

  4. オブジェクトの作成を最小限に抑える: 新しいオブジェクトの作成は、特にループ内での処理にコストがかかる可能性があります。可能な限りオブジェクトを再利用するようにしています。

  5. 組み込み関数とライブラリを使用する: Python の組み込み関数と標準ライブラリは多くの場合最適化されており、カスタム実装よりも高速です。

  6. グローバル変数を避ける: グローバル変数へのアクセスは、ローカル変数へのアクセスよりも遅くなります。

  7. メンバーシップ テストには 'in' を使用します: リスト、タプル、セットの場合、'in' を使用するとループより高速です。

これらの実践のいくつかを組み込んだ例を次に示します。

from collections import Counter

word_counts = Counter(['apple', 'banana', 'apple', 'cherry'])
ログイン後にコピー
ログイン後にコピー

この関数は、defaultdict を使用してキーが存在するかどうかの明示的なチェックを回避し、単一ループでデータを処理し、最終的な計算には辞書内包表記を使用します。

結論として、Python コードを最適化するには練習と経験が必要なスキルです。これらのテクニックを適用し、最適化の影響を常に測定することで、エレガントなだけでなくパフォーマンスの高い Python コードを作成できます。時期尚早な最適化が諸悪の根源であることを忘れないでください。そのため、最適化が本当に必要な箇所を特定するために、必ず最初にコードのプロファイリングを行ってください。


私たちの作品

私たちの作品をぜひチェックしてください:

インベスターセントラル | 投資家中央スペイン人 | 中央ドイツの投資家 | スマートな暮らし | エポックとエコー | 不可解な謎 | ヒンドゥーヴァ | エリート開発者 | JS スクール


私たちは中程度です

Tech Koala Insights | エポックズ&エコーズワールド | インベスター・セントラル・メディア | 不可解な謎 中 | 科学とエポックミディアム | 現代ヒンドゥーヴァ

以上がコードを高速化するための優れた Python パフォーマンス最適化テクニックの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python vs. C:パフォーマンスと効率の探索 Python vs. C:パフォーマンスと効率の探索 Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Python Standard Libraryの一部はどれですか:リストまたは配列はどれですか? Apr 27, 2025 am 12:03 AM

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Pythonの学習:2時間の毎日の研究で十分ですか? Pythonの学習:2時間の毎日の研究で十分ですか? Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Python vs. C:重要な違​​いを理解します Python vs. C:重要な違​​いを理解します Apr 21, 2025 am 12:18 AM

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

See all articles