目次
複数の GroupBy 列に複数の関数を適用する
はじめに
Dict での agg の使用
Lambda 関数での agg の使用
カスタム関数で apply を使用する
結論
ホームページ バックエンド開発 Python チュートリアル Pandas の複数の GroupBy 列に複数の関数を効率的に適用するにはどうすればよいですか?

Pandas の複数の GroupBy 列に複数の関数を効率的に適用するにはどうすればよいですか?

Dec 13, 2024 pm 06:01 PM

How Can I Efficiently Apply Multiple Functions to Multiple GroupBy Columns in Pandas?

複数の GroupBy 列に複数の関数を適用する

はじめに

グループ化されたデータを操作する場合、多くの場合、複数の関数を複数の列に適用する必要があります。 Pandas ライブラリには、これを実現するためのメソッド (agg メソッドや apply メソッドなど) がいくつか用意されています。ただし、これらのメソッドには特定の制限があり、常に特定のユースケースを満たしているとは限りません。

Dict での agg の使用

質問で述べたように、groupby シリーズに複数の関数を適用することが可能です。辞書を使用したオブジェクト:

grouped['D'].agg({'result1' : np.sum,
                   'result2' : np.mean})
ログイン後にコピー

このアプローチでは、列名をキーとして指定し、対応する関数を値として指定できます。ただし、これは Series の groupby オブジェクトに対してのみ機能します。 groupby DataFrame に適用される場合、ディクショナリ キーは出力列名ではなく列名であることが期待されます。

Lambda 関数での agg の使用

この質問では、agg 内で lambda 関数を使用して実行することも検討しています。 groupby オブジェクト内の他の列に基づく操作。このアプローチは、関数に他の列への依存関係が含まれる場合に適しています。 agg メソッドでは明示的にサポートされていませんが、列名を文字列として手動で指定することでこの制限を回避できます。

grouped.agg({'C_sum' : lambda x: x['C'].sum(),
             'C_std': lambda x: x['C'].std(),
             'D_sum' : lambda x: x['D'].sum()},
             'D_sumifC3': lambda x: x['D'][x['C'] == 3].sum(), ...)
ログイン後にコピー

このアプローチにより、他の列に依存する関数も含め、複数の関数を異なる列に適用できます。 。ただし、冗長になる可能性があり、列名の慎重な処理が必要です。

カスタム関数で apply を使用する

より柔軟なアプローチは、グループ DataFrame 全体を渡す apply メソッドを使用することです。提供された関数。これにより、より複雑な操作やグループ内の列間の相互作用を実行できるようになります。

def f(x):
    d = {}
    d['a_sum'] = x['a'].sum()
    d['a_max'] = x['a'].max()
    d['b_mean'] = x['b'].mean()
    d['c_d_prodsum'] = (x['c'] * x['d']).sum()
    return pd.Series(d, index=['a_sum', 'a_max', 'b_mean', 'c_d_prodsum'])

df.groupby('group').apply(f)
ログイン後にコピー

適切にラベル付けされた列を含む Series を返すことで、groupby DataFrame で複数の計算を簡単に実行できます。このアプローチはより汎用性が高く、複数の列に基づいた複雑な操作が可能です。

結論

グループ化された複数の列に複数の関数を適用するには、データ構造と目的の操作を慎重に検討する必要があります。 agg メソッドは Series オブジェクトに対する単純な操作に適していますが、apply メソッドは groupby DataFrame を操作したり、複雑な計算を実行したりする場合に優れた柔軟性を提供します。

以上がPandas の複数の GroupBy 列に複数の関数を効率的に適用するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:比較されたアプリケーションとユースケース Python vs. C:比較されたアプリケーションとユースケース Apr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間でどのくらいのPythonを学ぶことができますか? 2時間でどのくらいのPythonを学ぶことができますか? Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

2時間のPython計画:現実的なアプローチ 2時間のPython計画:現実的なアプローチ Apr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:主要なアプリケーションの調査 Python:主要なアプリケーションの調査 Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

See all articles