ホームページ バックエンド開発 Python チュートリアル 外国為替 API を使用してプロのようにバックテストを行う

外国為替 API を使用してプロのようにバックテストを行う

Dec 13, 2024 am 03:18 AM

金融市場の動的​​な性質により、取引戦略を開発および検証するために信頼できるデータを利用することが必要です。バックテスト環境に高品質のデータを効率的に組み込むことは、トレーダーやアナリストにとって非常に重要です。 TraderMade API は、正確かつ詳細かつ包括的な市場データを提供することで、これらの専門家に力を与えます。
この分析では、TraderMade の Time Series API を利用して履歴データを取得し、簡単な単純移動平均 (SMA) クロスオーバー戦略を実行して、その履歴パフォーマンスを評価します。

SMAクロスオーバー戦略について

単純移動平均 (SMA) クロスオーバー戦略は、基本的なテクニカル分析手法です。これには 2 つの SMA の観察が含まれます。1 つは価格変動に対する感度が高い短期 SMA、もう 1 つは短期的な価格変動の影響を軽減する長期 SMA です。

買いシグナルは、短期 SMA が長期 SMA を上回ったときに生成され、潜在的な上昇トレンドを示します。逆に、短期 SMA が長期 SMA を下回ると売りシグナルがトリガーされ、潜在的な下降トレンドを示します。

データ収集

次のように TraderMade の SDK をインストールすることから始めます:

!pip install tradermade

ログイン後にコピー
ログイン後にコピー

当社では、インストールされたソフトウェア開発キット (SDK) を使用して、外国為替 (外国為替) ペアの時系列データを 1 時間ごとに取得します。後続の Python コードは、EUR/USD 通貨ペアのデータの取得を例にしています。

import tradermade as tm
import pandas as pd
def fetch_forex_data(api_key, currency, start_date, end_date,    interval="hourly", fields=["open", "high", "low", "close"]):

   # Set API key
   tm.set_rest_api_key(api_key)
   # Fetch the data
   data = tm.timeseries(currency=currency, start=start_date, end=end_date, interval=interval, fields=fields)

   # Convert data directly to DataFrame
   df = pd.DataFrame(data)

   # Convert 'date' column to datetime
   df["date"] = pd.to_datetime(df["date"])

   # Set 'date' as the index
   df.set_index("date", inplace=True)

   return df

# Adjust as needed
api_key = "YOUR TRADERMADE API KEY"
currency = "EURUSD"
start_date = "2024-11-01-00:00"
end_date = "2024-11-27-05:12"

# Fetch the data and display the first few rows
forex_data = fetch_forex_data(api_key, currency, start_date, end_date)
forex_data = forex_data.rename(columns={"open": "Open", "high": "High", "low": "Low", "close": "Close"})
forex_data.head()
ログイン後にコピー

Backtest Like a Pro with a Forex API

バックテストのためのデータ取得と前処理が正常に完了しました。

シンプルな SMA クロスオーバー戦略の実装とバックテスト

このセクションでは、バックテスト Python ライブラリを利用して、SMA クロスオーバー戦略を定義および評価します。バックテスト ライブラリに馴染みのない人のために説明すると、バックテスト ライブラリは、テクニカル取引戦略のバックテスト用の著名で堅牢な Python フレームワークであると考えられています。これらの戦略には、SMA クロスオーバー、RSI クロスオーバー、平均反転戦略、モメンタム戦略などを含む多様な範囲が含まれます。

import numpy as np
from backtesting import Backtest, Strategy
from backtesting.lib import crossover
from backtesting.test import SMA

# Define the SMA crossover trading strategy
class SMACrossoverStrategy(Strategy):
       def init(self):
           # Calculate shorter-period SMAs for limited data
           price = self.data.Close
           self.short_sma = self.I(SMA, price, 20)  # Short window
           self.long_sma = self.I(SMA, price, 60)  # Long window

       def next(self):
           # Check for crossover signals
           if crossover(self.short_sma, self.long_sma):
               self.buy()
           elif crossover(self.long_sma, self.short_sma):
               self.sell()

   # Initialize and run the backtest
bt = Backtest(forex_data, SMACrossoverStrategy, cash=10000, commission=.002)
result = bt.run()

   # Display the backtest results
print("Backtest Results:")
print(result)
ログイン後にコピー

Backtest Like a Pro with a Forex API

この戦略では、20 期間と 60 期間の SMA という 2 つの移動平均が使用されます。買い注文は、短期 SMA が長期 SMA を上回ったときに実行されます。逆に、短期 SMA が長期 SMA を下回ると売り注文がトリガーされます。この単純な戦略により、25 日間の取引期間内に 6 回の取引で 243 ドルの利益が得られました。

株式および SMA 曲線分析

後続の Python コードは、SMA クロスオーバー戦略のパフォーマンスを評価します。 SMA は、価格トレンドの視覚化を容易にし、売買シグナルを生成するクロスオーバー ポイントを特定します。株式曲線は、ポートフォリオの成長に対するこれらのシグナルの影響を示すパフォーマンス指標として機能します。

両方の曲線を統合することで、トレーダーはクロスオーバー イベントとポートフォリオ価値の変化との相関関係を容易に観察でき、SMA クロスオーバー戦略の有効性についての重要な洞察が得られます。

Plotly を利用して株式と SMA 曲線を視覚化し、トレーダーが戦略の収益性を効果的に評価できるようにします。

!pip install tradermade

ログイン後にコピー
ログイン後にコピー

Backtest Like a Pro with a Forex API

結論

バックテストを成功させるには正確な高頻度データが必要であり、TraderMade の API によりシームレスな統合が促進されます。経験レベルに関係なく、さまざまな戦略を検討する初心者であっても、洗練されたモデルを開発する経験豊富なアナリストであっても、同社の製品は必要なツールを提供します。
TraderMade の API をワークフローに組み込む準備はできていますか?今すぐ旅を始めて、コンセプトを現実に変えましょう。

以上が外国為替 API を使用してプロのようにバックテストを行うの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:比較されたアプリケーションとユースケース Python vs. C:比較されたアプリケーションとユースケース Apr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間でどのくらいのPythonを学ぶことができますか? 2時間でどのくらいのPythonを学ぶことができますか? Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間のPython計画:現実的なアプローチ 2時間のPython計画:現実的なアプローチ Apr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:主要なアプリケーションの調査 Python:主要なアプリケーションの調査 Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

See all articles