ホームページ バックエンド開発 Python チュートリアル シンプルな生成 AI チャットボットの構築: 実践ガイド

シンプルな生成 AI チャットボットの構築: 実践ガイド

Dec 11, 2024 pm 01:12 PM

Building a Simple Generative AI Chatbot: A Practical Guide

このチュートリアルでは、Python と OpenAI API を使用して生成 AI チャットボットを作成する手順を説明します。コンテキストを維持し、役立つ応答を提供しながら、自然な会話を行うことができるチャットボットを構築します。

前提条件

  • Python 3.8
  • Python プログラミングの基本的な理解
  • OpenAI API キー
  • RESTful API の基礎知識

環境のセットアップ

まず、開発環境をセットアップしましょう。新しい Python プロジェクトを作成し、必要な依存関係をインストールします。

pip install openai python-dotenv streamlit
ログイン後にコピー

プロジェクトの構造

私たちのチャットボットはクリーンなモジュール構造になります:

chatbot/
├── .env
├── app.py
├── chat_handler.py
└── requirements.txt
ログイン後にコピー

実装

chat_handler.py のコア チャットボット ロジックから始めましょう:

import openai
from typing import List, Dict
import os
from dotenv import load_dotenv

load_dotenv()

class ChatBot:
    def __init__(self):
        openai.api_key = os.getenv("OPENAI_API_KEY")
        self.conversation_history: List[Dict[str, str]] = []
        self.system_prompt = """You are a helpful AI assistant. Provide clear, 
        accurate, and engaging responses while maintaining a friendly tone."""

    def add_message(self, role: str, content: str):
        self.conversation_history.append({"role": role, "content": content})

    def get_response(self, user_input: str) -> str:
        # Add user input to conversation history
        self.add_message("user", user_input)

        # Prepare messages for API call
        messages = [{"role": "system", "content": self.system_prompt}] + \
                  self.conversation_history

        try:
            # Make API call to OpenAI
            response = openai.ChatCompletion.create(
                model="gpt-3.5-turbo",
                messages=messages,
                max_tokens=1000,
                temperature=0.7
            )

            # Extract and store assistant's response
            assistant_response = response.choices[0].message.content
            self.add_message("assistant", assistant_response)

            return assistant_response

        except Exception as e:
            return f"An error occurred: {str(e)}"
ログイン後にコピー

次に、app.py で Streamlit を使用して簡単な Web インターフェイスを作成しましょう。

import streamlit as st
from chat_handler import ChatBot

def main():
    st.title("? AI Chatbot")

    # Initialize session state
    if "chatbot" not in st.session_state:
        st.session_state.chatbot = ChatBot()

    # Chat interface
    if "messages" not in st.session_state:
        st.session_state.messages = []

    # Display chat history
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    # Chat input
    if prompt := st.chat_input("What's on your mind?"):
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)

        # Get bot response
        response = st.session_state.chatbot.get_response(prompt)

        # Add assistant response to chat history
        st.session_state.messages.append({"role": "assistant", "content": response})
        with st.chat_message("assistant"):
            st.write(response)

if __name__ == "__main__":
    main()
ログイン後にコピー

主な特長

  1. 会話メモリ: チャットボットは会話履歴を保存することでコンテキストを維持します。
  2. システム プロンプト: システム プロンプトを通じてチャットボットの動作と性格を定義します。
  3. エラー処理: この実装には、API 呼び出しの基本的なエラー処理が含まれています。
  4. ユーザー インターフェイス: Streamlit を使用したクリーンで直感的な Web インターフェイス。

チャットボットの実行

  1. OpenAI API キーを使用して .env ファイルを作成します。
OPENAI_API_KEY=your_api_key_here
ログイン後にコピー
  1. アプリケーションを実行します。
streamlit run app.py
ログイン後にコピー

潜在的な機能強化

  1. 会話の永続化: チャット履歴を保存するためのデータベース統合を追加します。
  2. カスタムパーソナリティ: ユーザーがさまざまなチャットボットのパーソナリティを選択できるようにします。
  3. 入力検証: より堅牢な入力検証とサニタイズを追加します。
  4. API レート制限: API 使用量を管理するためにレート制限を実装します。
  5. レスポンス ストリーミング: ユーザー エクスペリエンスを向上させるために、ストリーミング レスポンスを追加します。

結論

この実装は、基本的だが機能的な生成型 AI チャットボットを示しています。モジュール設計により、特定のニーズに基づいて拡張やカスタマイズが簡単になります。この例では OpenAI の API を使用していますが、同じ原則を他の言語モデルや API にも適用できます。

チャットボットを導入するときは、次の点を考慮する必要があることに注意してください。

  • API のコストと使用制限
  • ユーザーデータのプライバシーとセキュリティ
  • 応答遅延と最適化
  • 入力の検証とコンテンツの管理

リソース

  • OpenAI API ドキュメント
  • Streamlit ドキュメント
  • Python 環境管理

以上がシンプルな生成 AI チャットボットの構築: 実践ガイドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Python vs. C:比較されたアプリケーションとユースケース Python vs. C:比較されたアプリケーションとユースケース Apr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

Python:ゲーム、GUIなど Python:ゲーム、GUIなど Apr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間でどのくらいのPythonを学ぶことができますか? 2時間でどのくらいのPythonを学ぶことができますか? Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

2時間のPython計画:現実的なアプローチ 2時間のPython計画:現実的なアプローチ Apr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python vs. C:曲線と使いやすさの学習 Python vs. C:曲線と使いやすさの学習 Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonと時間:勉強時間を最大限に活用する Pythonと時間:勉強時間を最大限に活用する Apr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:主要なアプリケーションの調査 Python:主要なアプリケーションの調査 Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Python:自動化、スクリプト、およびタスク管理 Python:自動化、スクリプト、およびタスク管理 Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

See all articles