Python の `quit()`、`exit()`、`sys.exit()`、および `os._exit()` の違いは何ですか?
Python 終了コマンド: quit()、exit()、sys.exit()、および os._exit() の区別
Python にはスクリプトの実行を終了するためのコマンドが多数用意されていますが、それらの区別と適切な使用シナリオは複雑になる場合があります。各オプションを詳しく調べて、それらをいつ使用するべきかを理解しましょう。
quit() と exit(): ユーザーフレンドリーだが制限付き
quit() と exit()相互にエイリアスとして機能するため、使いやすくなります。どちらも SystemExit 例外を発生させますが、運用コードでの使用は強く推奨されません。これらの機能はサイト モジュールに依存しており、常に読み込まれるとは限りません。
sys.exit(): 製品コードに推奨
sys.exit() とは異なります。 quit() と exit() は、運用コードにとってより信頼性の高い選択肢です。 SystemExit 例外を発生させることで、スクリプトが適切にシャットダウンされるようになります。 sys モジュールは Python の不可欠な部分であり、その可用性を保証します。
os._exit(): 特殊なケースのみ
os._exit() は他のモジュールから分岐します。これは、クリーンアップ ハンドラーやその他の標準的なシャットダウン手順をバイパスして、プログラムを突然終了することによって行われます。この使用は、os.fork 経由で生成された子プロセスを終了するなど、特定のシナリオのためにのみ予約されています。
ベスト プラクティス: SystemExit または sys.exit() を発生させる
ほとんどの場合、スクリプトを終了する最適な方法は、SystemExit 例外を直接発生させるか、sys.exit() を使用することです。どちらの方法でもプログラムのクリーンなシャットダウンがトリガーされ、予測可能でエラーのない終了プロセスが保証されます。どちらを選択するかは、結局は個人の好みとスタイルによって決まります。
以上がPython の `quit()`、`exit()`、`sys.exit()`、および `os._exit()` の違いは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。
