Excel を使用した LlamaChat を使用したシンプルなチャットボットの構築]
この投稿では、Llama2 モデルを使用して Excel データをインテリジェントにクエリするチャットボットを構築する方法を説明します。
私たちが構築しているもの
- Excel ファイルをロードします。
- データを管理可能なチャンクに分割します。
- 高速検索のためにデータをベクトル データベースに保存します。
- ローカルの Llama2 モデルを使用して、 Excel ファイルの内容。
前提条件:
Python (≥ 3.8)
ライブラリ: langchain、pandas、非構造化、Chroma
ステップ 1: 依存関係をインストールする
%pip install -q unstructured langchain %pip install -q "unstructured[all-docs]"
ステップ 2: Excel ファイルをロードする
import pandas as pd excel_path = "Book2.xlsx" if excel_path: df = pd.read_excel(excel_path) data = df.to_string(index=False) else: print("Upload an Excel file")
ステップ 3: データをチャンクして Vector データベースに保存する
大きなテキスト データは、効果的な埋め込みとクエリのために、重複する小さなチャンクに分割されます。これらのチャンクは Chroma ベクトル データベースに保存されます。
from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.embeddings import OllamaEmbeddings from langchain_community.vectorstores import Chroma text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100) chunks = text_splitter.split_text(data) embedding_model = OllamaEmbeddings(model="nomic-embed-text", show_progress=False) vector_db = Chroma.from_texts( texts=chunks, embedding=embedding_model, collection_name="local-rag" )
ステップ 4: Llama2 モデルを初期化する
ChatOllama を使用して Llama2 モデルをローカルにロードします。
from langchain_community.chat_models import ChatOllama local_model = "llama2" llm = ChatOllama(model=local_model)
ステップ 5: クエリ プロンプトを作成する
チャットボットは Excel ファイルの特定の列名に基づいて応答します。モデルをガイドするプロンプト テンプレートを作成します
from langchain.prompts import PromptTemplate QUERY_PROMPT = PromptTemplate( input_variables=["question"], template="""You are an AI assistant. Answer the user's questions based on the column names: Id, order_id, name, sales, refund, and status. Original question: {question}""" )
ステップ 6: レトリバーをセットアップする
ベクター データベースから関連するチャンクを取得するように取得プログラムを構成します。これは、質問に答えるために Llama2 モデルによって使用されます。
from langchain.retrievers.multi_query import MultiQueryRetriever retriever = MultiQueryRetriever.from_llm( vector_db.as_retriever(), llm, prompt=QUERY_PROMPT )
ステップ 7: 応答チェーンを構築する
応答チェーンには以下が統合されます:
- コンテキストを取得する取得者。
- 質問とコンテキストをフォーマットするためのプロンプト。
- 回答を生成する Llama2 モデル。
- 応答をフォーマットするための出力パーサー。
from langchain.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_core.output_parsers import StrOutputParser template = """Answer the question based ONLY on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() )
ステップ 8: 質問する
さあ、質問する準備ができました。チェーンを呼び出して応答を取得する方法は次のとおりです:
raw_result = chain.invoke("How many rows are there?") final_result = f"{raw_result}\n\nIf you have more questions, feel free to ask!" print(final_result)
サンプル出力
サンプル Excel ファイルで上記のコードを実行すると、次の結果が得られました:
Based on the provided context, there are 10 rows in the table. If you have more questions, feel free to ask!
結論:
このアプローチでは、埋め込みと Llama2 モデルの力を利用して、Excel データ用のスマートで対話型のチャットボットを作成します。いくつかの調整を行うことで、これを拡張して他のタイプのドキュメントを操作したり、本格的なアプリに統合したりできます!
LinkedIn で UI を使用した動作例を確認してください。
BChat Excel のご紹介: Excel ファイル対話用の会話型 AI 搭載ツール
以上がExcel を使用した LlamaChat を使用したシンプルなチャットボットの構築]の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。
