ホームページ バックエンド開発 C++ 大規模なデータセットの Float 解析を最適化するにはどうすればよいですか?

大規模なデータセットの Float 解析を最適化するにはどうすればよいですか?

Nov 25, 2024 am 07:31 AM

How Can I Optimize Float Parsing for Large Datasets?

大規模なデータセットの Float 解析の最適化

大きなファイルからのスペースで区切られた float の解析は、時間のかかる作業となる可能性があります。これは、1 行に複数の float を含む数百万行を処理する場合に特に当てはまります。この課題に対処するには、パフォーマンスのボトルネックを最小限に抑える効率的な解析手法を採用することが不可欠です。

解析速度の測定

さまざまな解析手法の有効性を評価するためのベンチマークは次のとおりです。数百万のスペースで区切られた浮動小数点数を含む 515Mb の入力ファイルを使用して実行されます。その結果、異なるアプローチ間で解析時間に大きな違いがあることが明らかになりました。

Boost Spirit: トップ パフォーマー

驚くべきことに、Boost Spirit が最速の解析ソリューションとして浮上しました。この強力なライブラリには、従来の方法に比べていくつかの利点があります。

  • エラー処理: Spirit パーサーは解析エラーを自動的に検出して報告します。
  • 豊富な機能のサポート: 変数空白、/-Inf、
  • エレガントな構文: Spirit の構文は単純で簡単です。

その他の解析手法

Boost Spirit が解析速度でリードする一方、他の手法も有望な結果を示しました。

  • Eigen: この C ライブラリは、float を含む効率的な行列演算とベクトル演算を提供します。解析関数。
  • C 14 正規表現: C 14 の正規表現の改善により、正規表現を使用して解析を実行できます。
  • mmap: メモリ-マップされたファイルはファイル アクセスを高速化できますが、解析速度は向上しない可能性があります

ベンチマーク結果

次のグラフは、メモリ マップ ファイルを使用したさまざまな方法の解析時間をまとめています。

[画像解析時間ベンチマーク結果]

正しい選択アプローチ

最適な解析方法は、アプリケーションの特定の要件によって異なります。スピードと正確性が最優先される場合、Boost Spirit は優れた選択肢です。より単純なシナリオの場合は、Eigen または C 14 正規表現で十分です。

.hpp ファイル (古い実装)

std::vector<data> read_float3_data(std::string const &in)
{
  namespace spirit = boost::spirit;
  namespace qi = boost::spirit::qi;
  typedef std::vector<data> list;

  qi::rule<it, list(), qi::locals<bool>, data> triplet_rule =
      qi::phrase(
          (qi::double_ > qi::double_ > qi::double_) % qi::eol, qi::space, data());

  it first = in.begin();
  it last = in.end();
  it err  = in.end();
  bool parsing_ok = qi::phrase_parse(first, last, triplet_rule, qi::space,
                                            data(), qi::_pass, err);
  assert(parsing_ok && first == last);
  (void)err;
  return data();
}
ログイン後にコピー

以上が大規模なデータセットの Float 解析を最適化するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

C#対C:歴史、進化、将来の見通し C#対C:歴史、進化、将来の見通し Apr 19, 2025 am 12:07 AM

C#とCの歴史と進化はユニークであり、将来の見通しも異なります。 1.Cは、1983年にBjarnestrostrupによって発明され、オブジェクト指向のプログラミングをC言語に導入しました。その進化プロセスには、C 11の自動キーワードとラムダ式の導入など、複数の標準化が含まれます。C20概念とコルーチンの導入、将来のパフォーマンスとシステムレベルのプログラミングに焦点を当てます。 2.C#は2000年にMicrosoftによってリリースされました。CとJavaの利点を組み合わせて、その進化はシンプルさと生産性に焦点を当てています。たとえば、C#2.0はジェネリックを導入し、C#5.0は非同期プログラミングを導入しました。これは、将来の開発者の生産性とクラウドコンピューティングに焦点を当てます。

Cコミュニティ:リソース、サポート、開発 Cコミュニティ:リソース、サポート、開発 Apr 13, 2025 am 12:01 AM

C学習者と開発者は、Stackoverflow、RedditのR/CPPコミュニティ、CourseraおよびEDXコース、Github、Professional Consulting Services、およびCPPCONのオープンソースプロジェクトからリソースとサポートを得ることができます。 1. StackOverFlowは、技術的な質問への回答を提供します。 2。RedditのR/CPPコミュニティが最新ニュースを共有しています。 3。CourseraとEDXは、正式なCコースを提供します。 4. LLVMなどのGitHubでのオープンソースプロジェクトやスキルの向上。 5。JetBrainやPerforceなどの専門的なコンサルティングサービスは、技術サポートを提供します。 6。CPPCONとその他の会議はキャリアを助けます

C#対C:学習曲線と開発者エクスペリエンス C#対C:学習曲線と開発者エクスペリエンス Apr 18, 2025 am 12:13 AM

C#とCおよび開発者の経験の学習曲線には大きな違いがあります。 1)C#の学習曲線は比較的フラットであり、迅速な開発およびエンタープライズレベルのアプリケーションに適しています。 2)Cの学習曲線は急勾配であり、高性能および低レベルの制御シナリオに適しています。

CおよびXML:関係とサポートの調査 CおよびXML:関係とサポートの調査 Apr 21, 2025 am 12:02 AM

Cは、サードパーティライブラリ(TinyXML、PUGIXML、XERCES-Cなど)を介してXMLと相互作用します。 1)ライブラリを使用してXMLファイルを解析し、それらをC処理可能なデータ構造に変換します。 2)XMLを生成するときは、Cデータ構造をXML形式に変換します。 3)実際のアプリケーションでは、XMLが構成ファイルとデータ交換に使用されることがよくあり、開発効率を向上させます。

Cの静的分析とは何ですか? Cの静的分析とは何ですか? Apr 28, 2025 pm 09:09 PM

Cでの静的分析の適用には、主にメモリ管理の問題の発見、コードロジックエラーの確認、およびコードセキュリティの改善が含まれます。 1)静的分析では、メモリリーク、ダブルリリース、非初期化ポインターなどの問題を特定できます。 2)未使用の変数、死んだコード、論理的矛盾を検出できます。 3)カバー性などの静的分析ツールは、バッファーオーバーフロー、整数のオーバーフロー、安全でないAPI呼び出しを検出して、コードセキュリティを改善します。

誇大広告を超えて:今日のCの関連性を評価します 誇大広告を超えて:今日のCの関連性を評価します Apr 14, 2025 am 12:01 AM

Cは、現代のプログラミングにおいて依然として重要な関連性を持っています。 1)高性能および直接的なハードウェア操作機能により、ゲーム開発、組み込みシステム、高性能コンピューティングの分野で最初の選択肢になります。 2)豊富なプログラミングパラダイムとスマートポインターやテンプレートプログラミングなどの最新の機能は、その柔軟性と効率を向上させます。学習曲線は急ですが、その強力な機能により、今日のプログラミングエコシステムでは依然として重要です。

CでChronoライブラリを使用する方法は? CでChronoライブラリを使用する方法は? Apr 28, 2025 pm 10:18 PM

CでChronoライブラリを使用すると、時間と時間の間隔をより正確に制御できます。このライブラリの魅力を探りましょう。 CのChronoライブラリは、時間と時間の間隔に対処するための最新の方法を提供する標準ライブラリの一部です。 Time.HとCtimeに苦しんでいるプログラマーにとって、Chronoは間違いなく恩恵です。コードの読みやすさと保守性を向上させるだけでなく、より高い精度と柔軟性も提供します。基本から始めましょう。 Chronoライブラリには、主に次の重要なコンポーネントが含まれています。STD:: Chrono :: System_Clock:現在の時間を取得するために使用されるシステムクロックを表します。 STD :: Chron

Cの未来:適応と革新 Cの未来:適応と革新 Apr 27, 2025 am 12:25 AM

Cの将来は、並列コンピューティング、セキュリティ、モジュール化、AI/機械学習に焦点を当てます。1)並列コンピューティングは、コルーチンなどの機能を介して強化されます。 2)セキュリティは、より厳格なタイプのチェックとメモリ管理メカニズムを通じて改善されます。 3)変調は、コード組織とコンパイルを簡素化します。 4)AIと機械学習は、数値コンピューティングやGPUプログラミングサポートなど、CにComply Coveに適応するように促します。

See all articles