


KNearest および SVM アルゴリズムを使用して、OpenCV-Python で基本的な数字認識 OCR システムを実装するにはどうすればよいですか?
OpenCV-Python での単純な数字認識 OCR
概要
この記事は、ガイドを目的としています基本的な数字認識 OCR (光学式文字認識) の実装を通じて、 OpenCV-Pythonを使用したシステム。 KNearest と SVM という 2 つの一般的な機械学習アルゴリズムについて説明します。
質問 1: Letter_recognition.data ファイル
Letter_recognition.data は、OpenCV-Python に含まれるデータセットです。サンプル。これには、手書きの文字のコレクションと各文字の 16 個の特徴値が含まれています。このファイルは、さまざまな文字認識タスクのトレーニング データとして機能します。
独自の Letter_recognition.data の構築:
次の手順に従って、独自の Letter_recognition.data ファイルを作成できます。 :
- 各文字を として表現した文字データセットを準備します。 10x10 ピクセルの画像。
- 各画像からピクセル値を抽出して、100 個の値の特徴ベクトルを形成します。
- 各文字にラベル (A ~ Z に対応する 0 ~ 25) を手動で割り当てます。
- 各行の形式を指定して、特徴ベクトルとラベルをテキスト ファイルに保存します。
質問 2: KNearest の results.ravel()
results.ravel() は配列を変換します認識された数字を多次元配列からフラットな 1D 配列に変換します。これにより、結果の解釈と表示が容易になります。
質問 3: 単純な数字認識ツール
letter_recognition.data を使用して単純な数字認識ツールを作成するには、次の手順に従います。手順:
データ準備:
- カスタムのletter_recognition.data ファイルをロードするか、OpenCV のサンプルを使用します。
トレーニング:
- KNearest または SVM 分類器を作成するインスタンス。
- letter_recognition.data からのサンプルと応答を使用して分類器をトレーニングします。
テスト:
- 画像をロードします認識される数字が含まれています。
- 画像を前処理して個々の情報を分離します数字。
- 各数字を特徴ベクトル (100 ピクセル値) に変換します。
- トレーニングされた分類子を使用して、各特徴ベクトルに最も近い一致を見つけ、対応する数字を表示します。
コード例:
import numpy as np import cv2 # Load data samples = np.loadtxt('my_letter_recognition.data', np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') }) responses = a[:,0] # Create classifier model = cv2.KNearest() model.train(samples, responses) # Load test image test_img = cv2.imread('test_digits.png') # Preprocess image gray = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY) thresh = cv2.adaptiveThreshold(gray, 255, 1, 1, 11, 2) # Extract digits contours, hierarchy = cv2.findContours(thresh, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) digits = [] for cnt in contours: if cv2.contourArea(cnt) > 50: [x, y, w, h] = cv2.boundingRect(cnt) roi = thresh[y:y+h, x:x+w] roismall = cv2.resize(roi, (10, 10)) digits.append(roismall) # Recognize digits results = [] for digit in digits: roismall = roismall.reshape((1, 100)) roismall = np.float32(roismall) _, results, _, _ = model.find_nearest(roismall, k=1) results = results.ravel() results = [chr(int(res) + ord('A')) for res in results] # Display results output = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB) for (digit, (x, y, w, h)) in zip(results, contours): cv2.rectangle(output, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(output, str(digit), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) cv2.imshow('Output', output) cv2.waitKey(0)
この例では、数字認識には KNearest を使用しますが、代わりに SVM 分類子を作成することで、SVM に置き換えることができます。
以上がKNearest および SVM アルゴリズムを使用して、OpenCV-Python で基本的な数字認識 OCR システムを実装するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。
