メモリの問題を発生させずに、Python 2.7 で巨大な CSV ファイルを効率的に処理するにはどうすればよいでしょうか?
巨大な CSV ファイルの読み取り: メモリと速度の最適化
数百万の行と数百の列を含む大規模な CSV ファイルを処理しようとする場合、従来のイテレータを使用するアプローチでは、メモリ関連の問題が発生する可能性があります。この記事では、Python 2.7 で大規模な CSV データを処理するための最適化された手法について説明します。
メモリの最適化:
メモリの問題の核心は、メモリ内リストの構築にあります。大規模なデータセットを保存します。この問題を軽減するために、Python は関数をジェネレーター関数に変換する yield キーワードを提供します。これらの関数は、各 yield ステートメントの後で実行を一時停止し、データが発生するたびに増分処理できるようにします。
ジェネレーター関数を使用すると、データを行ごとに処理できるため、ファイル全体をメモリに保存する必要がなくなります。次のコードは、このアプローチを示しています。
import csv def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row count = 0 for row in datareader: if row[3] == criterion: yield row count += 1 elif count: # stop processing when a consecutive series of non-matching rows is encountered return
速度の強化:
さらに、Python のdropwhile 関数と takewhile 関数を活用して、処理速度をさらに向上させることができます。これらの関数はデータを効率的にフィルター処理できるため、目的の行をすばやく見つけることができます。方法は次のとおりです:
from itertools import dropwhile, takewhile def getstuff(filename, criterion): with open(filename, "rb") as csvfile: datareader = csv.reader(csvfile) yield next(datareader) # yield header row yield from takewhile( # yield matching rows lambda r: r[3] == criterion, dropwhile( # skip non-matching rows lambda r: r[3] != criterion, datareader)) return
ループ処理の簡素化:
ジェネレーター関数を組み合わせることで、データセットのループ処理を大幅に簡素化できます。 getstuff と getdata の最適化されたコードは次のとおりです。
def getdata(filename, criteria): for criterion in criteria: for row in getstuff(filename, criterion): yield row
これで、getdata ジェネレーターを直接反復処理できるようになり、行ごとに行のストリームが生成され、貴重なメモリ リソースが解放されます。
目標は、メモリ内のデータ ストレージを最小限に抑えながら、同時に処理効率を最大化することであることに注意してください。これらの最適化手法を適用すると、メモリの障害に遭遇することなく、巨大な CSV ファイルを効果的に処理できます。
以上がメモリの問題を発生させずに、Python 2.7 で巨大な CSV ファイルを効率的に処理するにはどうすればよいでしょうか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。
