大規模なデータ構造は Python のマルチプロセッシングで共有またはコピーされますか?
マルチプロセッシングにおける共有メモリ
Python のマルチプロセッシング モジュールでは、大規模なデータ構造がプロセス間で共有されるかコピーされるかという問題が懸念されます。
元の懸念事項
multiprocessing.Process を使用して複数のプロセスを作成し、大きなリストを引数として渡す場合、懸念事項は、これらのリストがプロセスごとにコピーされるのか、プロセス間で共有されるのかということです。彼ら。各プロセスがコピーを作成すると、メモリ使用量が大幅に増加する可能性があります。
コピーオンライト
Linux はコピーオンライトのアプローチを使用します。これは、次のことを意味します。データは変更されるまで物理的にコピーされません。これは、サブプロセスごとにリストが重複しないことを示唆しています。
参照カウント
ただし、オブジェクトにアクセスすると、その参照カウントが更新されます。サブプロセスがリスト要素にアクセスすると、その参照カウントが増加します。その結果、オブジェクト全体 (リスト) がコピーされるかどうかは不明です。
メモリ使用量の監視
観察によると、オブジェクト全体が実際には次のようになります。おそらく参照カウントが原因で、サブプロセスごとに複製されます。リストが変更できず、リストの参照カウントが常に正の場合、これは問題になります。
Python 3.8.0 の共有メモリ
Python 3.8.0 では 'true' が導入されています。 multiprocessing.shared_memory モジュールを使用した共有メモリ。これにより、コピーせずに複数のプロセスからアクセスできる共有メモリ オブジェクトを明示的に作成できます。
要約すると、Linux のコピーオンライト アプローチは大規模なデータ構造をコピーする可能性を減らしますが、参照カウントにより、実際のコピーにつながります。 Python 3.8.0 で「真の」共有メモリを使用すると、明示的に共有オブジェクトを作成するメカニズムが提供されるため、この問題は解決されます。
以上が大規模なデータ構造は Python のマルチプロセッシングで共有またはコピーされますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。
