ホームページ バックエンド開発 Golang GitLab CI/CD および SFTP 統合のための Terraform を使用した Lambda の実装、Go の S Databricks

GitLab CI/CD および SFTP 統合のための Terraform を使用した Lambda の実装、Go の S Databricks

Nov 03, 2024 am 07:50 AM

Implementando uma Lambda com GitLab CI/CD e Terraform para Integração SFTP, S Databricks em Go

Databricks のプロセス自動化によるコスト削減

クライアントでは、Databricks で実行されるプロセスのコストを削減する必要がありました。 Databricks が担当した機能の 1 つは、さまざまな SFTP からファイルを収集し、それらを解凍して Data Lake に配置することでした。

データ ワークフローの自動化は、現代のデータ エンジニアリングにおいて重要な要素です。この記事では、GitLab CI/CD と Terraform を使用して、Go アプリケーションが SFTP サーバーに接続し、ファイルを収集して Amazon S3 に保存し、最終的に Databricks でジョブをトリガーできるようにする AWS Lambda 関数を作成する方法を説明します。このエンドツーエンドのプロセスは、効率的なデータ統合と自動化に依存するシステムにとって不可欠です。

この記事に必要なもの

  • プロジェクトのリポジトリを持つ GitLab アカウント。
  • Lambda、S3、および IAM リソースを作成する権限を持つ AWS アカウント。
  • ジョブを作成および実行する権限を持つ Databricks アカウント。
  • Go、Terraform、GitLab CI/CD の基本的な知識。

ステップ 1: Go アプリケーションの準備

まず、SFTP サーバーに接続してファイルを収集する Go アプリケーションを作成します。 SFTP 接続を確立するには github.com/pkg/sftp などのパッケージを使用し、AWS S3 サービスと対話するには github.com/aws/aws-sdk-go などのパッケージを使用します。

package main

import (
 "fmt"
 "log"
 "os"
 "path/filepath"

 "github.com/pkg/sftp"
 "golang.org/x/crypto/ssh"
 "github.com/aws/aws-sdk-go/aws"
 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-sdk-go/service/s3/s3manager"
)

func main() {
 // Configuração do cliente SFTP
 user := "seu_usuario_sftp"
 pass := "sua_senha_sftp"
 host := "endereco_sftp:22"
 config := &ssh.ClientConfig{
  User: user,
  Auth: []ssh.AuthMethod{
   ssh.Password(pass),
  },
  HostKeyCallback: ssh.InsecureIgnoreHostKey(),
 }

 // Conectar ao servidor SFTP
 conn, err := ssh.Dial("tcp", host, config)
 if err != nil {
  log.Fatal(err)
 }
 client, err := sftp.NewClient(conn)
 if err != nil {
  log.Fatal(err)
 }
 defer client.Close()

 // Baixar arquivos do SFTP
 remoteFilePath := "/path/to/remote/file"
 localDir := "/path/to/local/dir"
 localFilePath := filepath.Join(localDir, filepath.Base(remoteFilePath))
 dstFile, err := os.Create(localFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer dstFile.Close()

 srcFile, err := client.Open(remoteFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer srcFile.Close()

 if _, err := srcFile.WriteTo(dstFile); err != nil {
  log.Fatal(err)
 }

 fmt.Println("Arquivo baixado com sucesso:", localFilePath)

 // Configuração do cliente S3
 sess := session.Must(session.NewSession(&aws.Config{
  Region: aws.String("us-west-2"),
 }))
 uploader := s3manager.NewUploader(sess)

 // Carregar arquivo para o S3
 file, err := os.Open(localFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer file.Close()

 _, err = uploader.Upload(&s3manager.UploadInput{
  Bucket: aws.String("seu-bucket-s3"),
  Key:    aws.String(filepath.Base(localFilePath)),
  Body:   file,
 })
 if err != nil {
  log.Fatal("Falha ao carregar arquivo para o S3:", err)
 }

 fmt.Println("Arquivo carregado com sucesso no S3")
}
ログイン後にコピー
ログイン後にコピー

ステップ 2: Terraform の構成

Terraform は、Lambda 関数と必要なリソースを AWS にプロビジョニングするために使用されます。 Lambda 関数、IAM ポリシー、S3 バケットの作成に必要な設定を含む main.tf ファイルを作成します。

provider "aws" {
  region = "us-east-1"
}

resource "aws_iam_role" "lambda_execution_role" {
  name = "lambda_execution_role"

  assume_role_policy = jsonencode({
    Version = "2012-10-17",
    Statement = [
      {
        Action = "sts:AssumeRole",
        Effect = "Allow",
        Principal = {
          Service = "lambda.amazonaws.com"
        },
      },
    ]
  })
}

resource "aws_iam_policy" "lambda_policy" {
  name        = "lambda_policy"
  description = "A policy that allows a lambda function to access S3 and SFTP resources"

  policy = jsonencode({
    Version = "2012-10-17",
    Statement = [
      {
        Action = [
          "s3:ListBucket",
          "s3:GetObject",
          "s3:PutObject",
        ],
        Effect = "Allow",
        Resource = [
          "arn:aws:s3:::seu-bucket-s3",
          "arn:aws:s3:::seu-bucket-s3/*",
        ],
      },
    ]
  })
}

resource "aws_iam_role_policy_attachment" "lambda_policy_attachment" {
  role       = aws_iam_role.lambda_execution_role.name
  policy_arn = aws_iam_policy.lambda_policy.arn
}

resource "aws_lambda_function" "sftp_lambda" {
  function_name = "sftp_lambda_function"

  s3_bucket = "seu-bucket-s3-com-codigo-lambda"
  s3_key    = "sftp-lambda.zip"

  handler = "main"
  runtime = "go1.x"

  role = aws_iam_role.lambda_execution_role.arn

  environment {
    variables = {
      SFTP_HOST     = "endereco_sftp",
      SFTP_USER     = "seu_usuario_sftp",
      SFTP_PASSWORD = "sua_senha_sftp",
      S3_BUCKET     = "seu-bucket-s3",
    }
  }
}

resource "aws_s3_bucket" "s3_bucket" {
  bucket = "seu-bucket-s3"
  acl    = "private"
}
ログイン後にコピー
ログイン後にコピー

ステップ 3: GitLab CI/CD の構成

GitLab で、.gitlab-ci.yml ファイルに CI/CD パイプラインを定義します。このパイプラインには、Go アプリケーションをテストするステップ、Terraform を実行してインフラストラクチャをプロビジョニングするステップ、および必要に応じてクリーンアップするステップが含まれている必要があります。

stages:
  - test
  - build
  - deploy

variables:
  S3_BUCKET: "seu-bucket-s3"
  AWS_DEFAULT_REGION: "us-east-1"
  TF_VERSION: "1.0.0"

before_script:
  - 'which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )'
  - eval $(ssh-agent -s)
  - echo "$PRIVATE_KEY" | tr -d '\r' | ssh-add -
  - mkdir -p ~/.ssh
  - chmod 700 ~/.ssh
  - ssh-keyscan -H 'endereco_sftp' >> ~/.ssh/known_hosts

test:
  stage: test
  image: golang:1.18
  script:
    - go test -v ./...

build:
  stage: build
  image: golang:1.18
  script:
    - go build -o myapp
    - zip -r sftp-lambda.zip myapp
  artifacts:
    paths:
      - sftp-lambda.zip
  only:
    - master

deploy:
  stage: deploy
  image: hashicorp/terraform:$TF_VERSION
  script:
    - terraform init
    - terraform apply -auto-approve
  only:
    - master
  environment:
    name: production
ログイン後にコピー
ログイン後にコピー

ステップ 4: Databricks との統合

S3 にファイルをアップロードした後、Lambda 関数は Databricks でジョブをトリガーする必要があります。これは、Databricks API を使用して既存のジョブを起動することで実行できます。

package main

import (
 "bytes"
 "encoding/json"
 "fmt"
 "net/http"
)

// Estrutura para a requisição de iniciar um job no Databricks
type DatabricksJobRequest struct {
 JobID int `json:"job_id"`
}

// Função para acionar um job no Databricks
func triggerDatabricksJob(databricksInstance string, token string, jobID int) error {
 url := fmt.Sprintf("https://%s/api/2.0/jobs/run-now", databricksInstance)
 requestBody, _ := json.Marshal(DatabricksJobRequest{JobID: jobID})
 req, err := http.NewRequest("POST", url, bytes.NewBuffer(requestBody))
 if err != nil {
  return err
 }

 req.Header.Set("Content-Type", "application/json")
 req.Header.Set("Authorization", fmt.Sprintf("Bearer %s", token))

 client := &http.Client{}
 resp, err := client.Do(req)
 if err != nil {
  return err
 }
 defer resp.Body.Close()

 if resp.StatusCode != http.StatusOK {
  return fmt.Errorf("Failed to trigger Databricks job, status code: %d", resp.StatusCode)
 }

 return nil
}

func main() {
 // ... (código existente para conectar ao SFTP e carregar no S3)

 // Substitua pelos seus valores reais
 databricksInstance := "your-databricks-instance"
 databricksToken := "your-databricks-token"
 databricksJobID := 123 // ID do job que você deseja acionar

 // Acionar o job no Databricks após o upload para o S3
 err := triggerDatabricksJob(databricksInstance, databricksToken, databricksJobID)
 if err != nil {
  log.Fatal("Erro ao acionar o job do Databricks:", err)
 }

 fmt.Println("Job do Databricks acionado com sucesso")
}
ログイン後にコピー

ステップ 5: パイプラインの実行

パイプラインを実行するためにコードを GitLab リポジトリにプッシュします。すべての手順が正常に完了し、Lambda 関数が動作し、S3 および Databricks と正しく対話していることを確認してください。

完全なコードと .gitlab-ci.yml ファイルを設定したら、次の手順に従ってパイプラインを実行できます。

  • コードを GitLab リポジトリにプッシュします。
package main

import (
 "fmt"
 "log"
 "os"
 "path/filepath"

 "github.com/pkg/sftp"
 "golang.org/x/crypto/ssh"
 "github.com/aws/aws-sdk-go/aws"
 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-sdk-go/service/s3/s3manager"
)

func main() {
 // Configuração do cliente SFTP
 user := "seu_usuario_sftp"
 pass := "sua_senha_sftp"
 host := "endereco_sftp:22"
 config := &ssh.ClientConfig{
  User: user,
  Auth: []ssh.AuthMethod{
   ssh.Password(pass),
  },
  HostKeyCallback: ssh.InsecureIgnoreHostKey(),
 }

 // Conectar ao servidor SFTP
 conn, err := ssh.Dial("tcp", host, config)
 if err != nil {
  log.Fatal(err)
 }
 client, err := sftp.NewClient(conn)
 if err != nil {
  log.Fatal(err)
 }
 defer client.Close()

 // Baixar arquivos do SFTP
 remoteFilePath := "/path/to/remote/file"
 localDir := "/path/to/local/dir"
 localFilePath := filepath.Join(localDir, filepath.Base(remoteFilePath))
 dstFile, err := os.Create(localFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer dstFile.Close()

 srcFile, err := client.Open(remoteFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer srcFile.Close()

 if _, err := srcFile.WriteTo(dstFile); err != nil {
  log.Fatal(err)
 }

 fmt.Println("Arquivo baixado com sucesso:", localFilePath)

 // Configuração do cliente S3
 sess := session.Must(session.NewSession(&aws.Config{
  Region: aws.String("us-west-2"),
 }))
 uploader := s3manager.NewUploader(sess)

 // Carregar arquivo para o S3
 file, err := os.Open(localFilePath)
 if err != nil {
  log.Fatal(err)
 }
 defer file.Close()

 _, err = uploader.Upload(&s3manager.UploadInput{
  Bucket: aws.String("seu-bucket-s3"),
  Key:    aws.String(filepath.Base(localFilePath)),
  Body:   file,
 })
 if err != nil {
  log.Fatal("Falha ao carregar arquivo para o S3:", err)
 }

 fmt.Println("Arquivo carregado com sucesso no S3")
}
ログイン後にコピー
ログイン後にコピー
provider "aws" {
  region = "us-east-1"
}

resource "aws_iam_role" "lambda_execution_role" {
  name = "lambda_execution_role"

  assume_role_policy = jsonencode({
    Version = "2012-10-17",
    Statement = [
      {
        Action = "sts:AssumeRole",
        Effect = "Allow",
        Principal = {
          Service = "lambda.amazonaws.com"
        },
      },
    ]
  })
}

resource "aws_iam_policy" "lambda_policy" {
  name        = "lambda_policy"
  description = "A policy that allows a lambda function to access S3 and SFTP resources"

  policy = jsonencode({
    Version = "2012-10-17",
    Statement = [
      {
        Action = [
          "s3:ListBucket",
          "s3:GetObject",
          "s3:PutObject",
        ],
        Effect = "Allow",
        Resource = [
          "arn:aws:s3:::seu-bucket-s3",
          "arn:aws:s3:::seu-bucket-s3/*",
        ],
      },
    ]
  })
}

resource "aws_iam_role_policy_attachment" "lambda_policy_attachment" {
  role       = aws_iam_role.lambda_execution_role.name
  policy_arn = aws_iam_policy.lambda_policy.arn
}

resource "aws_lambda_function" "sftp_lambda" {
  function_name = "sftp_lambda_function"

  s3_bucket = "seu-bucket-s3-com-codigo-lambda"
  s3_key    = "sftp-lambda.zip"

  handler = "main"
  runtime = "go1.x"

  role = aws_iam_role.lambda_execution_role.arn

  environment {
    variables = {
      SFTP_HOST     = "endereco_sftp",
      SFTP_USER     = "seu_usuario_sftp",
      SFTP_PASSWORD = "sua_senha_sftp",
      S3_BUCKET     = "seu-bucket-s3",
    }
  }
}

resource "aws_s3_bucket" "s3_bucket" {
  bucket = "seu-bucket-s3"
  acl    = "private"
}
ログイン後にコピー
ログイン後にコピー
  • GitLab CI/CD は新しいコミットを検出し、パイプラインを自動的に開始します。
  • リポジトリの CI/CD セクションにアクセスして、GitLab のパイプラインの実行を追跡します。
  • すべての段階が成功すると、Lambda 関数がデプロイされ、使用できるようになります。

アクセス トークンや秘密キーなどの機密情報を保存するには、GitLab CI/CD で環境変数を構成する必要があることに注意してください。これは、[設定] > [設定] で行うことができます。 「CI/CD」> GitLab プロジェクトの「変数」。

また、Databricks トークンにジョブをトリガーするために必要な権限があること、および指定された ID でジョブが存在することを確認してください。

結論

GitLab CI/CD、Terraform、AWS Lambda などのツールを使用すると、データ エンジニアリング タスクの自動化を大幅に簡素化できます。この記事で説明する手順に従うことで、Go の効率性とシンプルさを備えた SFTP、S3、Databricks 間のデータ収集と統合を自動化する堅牢なシステムを作成できます。このアプローチにより、次のような問題に対処する準備が整います。大規模なデータ統合の課題

私の連絡先:

LinkedIn - エアトン リラ ジュニア

iMasters - エアトン・リラ・ジュニア

aws #lambda #terraform #gitlab #ci_cd #go #databricks #dataengineering #automation

stages:
  - test
  - build
  - deploy

variables:
  S3_BUCKET: "seu-bucket-s3"
  AWS_DEFAULT_REGION: "us-east-1"
  TF_VERSION: "1.0.0"

before_script:
  - 'which ssh-agent || ( apt-get update -y && apt-get install openssh-client -y )'
  - eval $(ssh-agent -s)
  - echo "$PRIVATE_KEY" | tr -d '\r' | ssh-add -
  - mkdir -p ~/.ssh
  - chmod 700 ~/.ssh
  - ssh-keyscan -H 'endereco_sftp' >> ~/.ssh/known_hosts

test:
  stage: test
  image: golang:1.18
  script:
    - go test -v ./...

build:
  stage: build
  image: golang:1.18
  script:
    - go build -o myapp
    - zip -r sftp-lambda.zip myapp
  artifacts:
    paths:
      - sftp-lambda.zip
  only:
    - master

deploy:
  stage: deploy
  image: hashicorp/terraform:$TF_VERSION
  script:
    - terraform init
    - terraform apply -auto-approve
  only:
    - master
  environment:
    name: production
ログイン後にコピー
ログイン後にコピー

以上がGitLab CI/CD および SFTP 統合のための Terraform を使用した Lambda の実装、Go の S Databricksの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Golangの目的:効率的でスケーラブルなシステムの構築 Golangの目的:効率的でスケーラブルなシステムの構築 Apr 09, 2025 pm 05:17 PM

GO言語は、効率的でスケーラブルなシステムの構築においてうまく機能します。その利点には次のものがあります。1。高性能:マシンコードにコンパイルされ、速度速度が速い。 2。同時プログラミング:ゴルチンとチャネルを介してマルチタスクを簡素化します。 3。シンプルさ:簡潔な構文、学習コストとメンテナンスコストの削減。 4。クロスプラットフォーム:クロスプラットフォームのコンパイル、簡単な展開をサポートします。

Golang and C:Concurrency vs. Raw Speed Golang and C:Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golangは並行性がCよりも優れていますが、Cは生の速度ではGolangよりも優れています。 1)Golangは、GoroutineとChannelを通じて効率的な並行性を達成します。これは、多数の同時タスクの処理に適しています。 2)Cコンパイラの最適化と標準ライブラリを介して、極端な最適化を必要とするアプリケーションに適したハードウェアに近い高性能を提供します。

Golang vs. Python:重要な違​​いと類似点 Golang vs. Python:重要な違​​いと類似点 Apr 17, 2025 am 12:15 AM

GolangとPythonにはそれぞれ独自の利点があります。Golangは高性能と同時プログラミングに適していますが、PythonはデータサイエンスとWeb開発に適しています。 Golangは同時性モデルと効率的なパフォーマンスで知られていますが、Pythonは簡潔な構文とリッチライブラリエコシステムで知られています。

Golang vs. Python:パフォーマンスとスケーラビリティ Golang vs. Python:パフォーマンスとスケーラビリティ Apr 19, 2025 am 12:18 AM

Golangは、パフォーマンスとスケーラビリティの点でPythonよりも優れています。 1)Golangのコンピレーションタイプの特性と効率的な並行性モデルにより、高い並行性シナリオでうまく機能します。 2)Pythonは解釈された言語として、ゆっくりと実行されますが、Cythonなどのツールを介してパフォーマンスを最適化できます。

パフォーマンスレース:ゴラン対c パフォーマンスレース:ゴラン対c Apr 16, 2025 am 12:07 AM

GolangとCにはそれぞれパフォーマンス競争において独自の利点があります。1)Golangは、高い並行性と迅速な発展に適しており、2)Cはより高いパフォーマンスと微細な制御を提供します。選択は、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

Golangの影響:速度、効率、シンプルさ Golangの影響:速度、効率、シンプルさ Apr 14, 2025 am 12:11 AM

speed、効率、およびシンプル性をspeedsped.1)speed:gocompilesquilesquicklyandrunseffictient、理想的なlargeprojects.2)効率:等系dribribraryreducesexexternaldedenciess、開発効果を高める3)シンプルさ:

CとGolang:パフォーマンスが重要な場合 CとGolang:パフォーマンスが重要な場合 Apr 13, 2025 am 12:11 AM

Cは、ハードウェアリソースと高性能の最適化が必要なシナリオにより適していますが、Golangは迅速な開発と高い並行性処理が必要なシナリオにより適しています。 1.Cの利点は、ハードウェア特性と高い最適化機能に近いものにあります。これは、ゲーム開発などの高性能ニーズに適しています。 2.Golangの利点は、その簡潔な構文と自然な並行性サポートにあり、これは高い並行性サービス開発に適しています。

GolangとC:パフォーマンスのトレードオフ GolangとC:パフォーマンスのトレードオフ Apr 17, 2025 am 12:18 AM

GolangとCのパフォーマンスの違いは、主にメモリ管理、コンピレーションの最適化、ランタイム効率に反映されています。 1)Golangのゴミ収集メカニズムは便利ですが、パフォーマンスに影響を与える可能性があります。

See all articles