Pandas で複数の Web サイトと国のスコアの差を計算するにはどうすればよいですか?
Pandas を使用した複数のフィールドのグループ化と差異の検索
データセットを操作する場合、時間の経過に伴う、または異なるカテゴリにわたる値間の差異や変化を計算することが必要になることがよくあります。 Pandas では、groupby() 関数と diff() 関数を利用してこれらの計算を効率的に実行できます。
指定されたシナリオでは、さまざまな Web サイトのデータとさまざまな国のスコアを含む DataFrame があります。目標は、サイトの国の組み合わせごとに 1/3/5 日のスコア差を判断することです。
データフレームの並べ替えとグループ化
まず、データフレームをサイト、国、および基準で並べ替えます。日付列。並べ替えにより、類似したデータ ポイントが確実にグループ化され、差異の計算が容易になります。
<code class="python">df = df.sort_values(by=['site', 'country', 'date'])</code>
次に、groupby() 関数を使用して、データをサイトおよび国別にグループ化します。
<code class="python">grouped = df.groupby(['site', 'country'])</code>
差の計算
データがグループ化されたので、diff() 関数を使用してスコアの差を計算できるようになります。この関数は、グループ内の連続する行の差を計算します。
<code class="python">df['diff'] = grouped['score'].diff().fillna(0)</code>
diff() 関数は、デフォルトで欠損値を 0 で埋め、一貫性のある完全なデータセットを保証します。
結果のデータフレーム
結果のデータフレームには、元のデータと計算されたスコア差が含まれます。
date site country score diff 8 2018-01-01 fb es 100 0.0 9 2018-01-02 fb gb 100 0.0 5 2018-01-01 fb us 50 0.0 6 2018-01-02 fb us 55 5.0 7 2018-01-03 fb us 100 45.0 1 2018-01-01 google ch 50 0.0 4 2018-01-02 google ch 10 -40.0 0 2018-01-01 google us 100 0.0 2 2018-01-02 google us 70 -30.0 3 2018-01-03 google us 60 -10.0
このデータフレームは、サイト/国の組み合わせごとに、必要な 1/3/5 日のスコア差を提供します。
以上がPandas で複数の Web サイトと国のスコアの差を計算するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。
