Numpy ブロードキャストを使用してパンダで範囲条件によってデータフレームをマージする方法?
Pandas で範囲条件によってデータフレームを結合する
データ分析の領域では、複数のソースからのデータを結合するのが一般的なタスクです。データ操作用の強力な Python ライブラリである Pandas は、範囲条件などのデータフレームを結合するためのさまざまなメソッドを提供します。この記事では、この特定のシナリオを詳しく掘り下げ、numpy ブロードキャストを使用した効率的な解決策を紹介します。
問題の説明
2 つのデータフレーム A と B が与えられた場合、目標は、データフレーム A の値がデータフレーム B で定義された特定の範囲内に収まる内部結合。従来、これは SQL 構文を使用して実現されていました:
<code class="sql">SELECT * FROM A, B WHERE A_value BETWEEN B_low AND B_high</code>
既存のソリューション
Pandas は、ダミー列を使用し、ダミー列でマージし、不要な行をフィルターで除外するという回避策を提供します。ただし、この方法は計算量が多くなります。あるいは、B の各 A 値に検索関数を適用することもできますが、このアプローチにも欠点があります。
Numpy ブロードキャスト: 実用的なアプローチ
Numpy ブロードキャストは、エレガントで効率的なソリューション。この手法では、ベクトル化を利用して、個々の要素ではなく配列全体に対して計算を実行します。目的のマージを実現するには:
- データフレーム A と B から値を抽出します。
-
numpy ブロードキャストを使用してブール マスクを作成します:
- A_value >= B_low
- A_value <= B_high
- マスクが True であるインデックスを見つけるには、numpy の np.where を使用します。
- 連結識別されたインデックスに基づいて、データフレーム A と B から対応する行を抽出します。
このアプローチでは、ブロードキャストを利用して A データフレーム全体の範囲比較を実行し、計算時間と複雑さを大幅に削減します。
例
次のデータフレームを考えてみましょう:
<code class="python">A = pd.DataFrame(dict( A_id=range(10), A_value=range(5, 105, 10) )) B = pd.DataFrame(dict( B_id=range(5), B_low=[0, 30, 30, 46, 84], B_high=[10, 40, 50, 54, 84] ))</code>
出力:
A_id A_value B_high B_id B_low 0 0 5 10 0 0 1 3 35 40 1 30 2 3 35 50 2 30 3 4 45 50 2 30
この出力は、成功したことを示しています。指定された範囲条件に基づいてデータフレーム A と B をマージします。
追加の考慮事項
左結合を実行するには、データフレーム A の不一致行を出力に含めます。これは、numpy の ~np.in1d を使用して一致しない行を特定し、結果に追加することで実現できます。
結論として、numpy ブロードキャストは、範囲条件に基づいてデータフレームを結合するための堅牢かつ効率的なアプローチを提供します。ベクトル化機能によりパフォーマンスが向上し、大規模なデータセットにとって理想的なソリューションとなります。
以上がNumpy ブロードキャストを使用してパンダで範囲条件によってデータフレームをマージする方法?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化
