リフレクションを使用して入れ子構造のフィールド アドレスを取得するにはどうすればよいですか?
リフレクションを使用したネストされた構造のフィールド アドレスの取得
このシナリオでは、ネストされた構造を走査して検査し、非構造体のアドレスを取得します。 -その中のポインターフィールド。リフレクションを使用すると、フィールドを反復処理する関数が作成できますが、埋め込まれた部分構造にある非ポインター フィールドのメモリ アドレスを取得するのが困難になります。
この問題を修正するには、valueField.Interface() が次のことを行うことに注意することが重要です。フィールド内に格納されている実際の値を返すため、期待される結果が得られません。これは、非ポインター型を操作する場合には無効です。
解決策は、InspectStructV 関数を変更して、代わりに Reflect.Value を受け取るようにすることです。インターフェース{}。これにより、リフレクション オブジェクトを直接操作し、フィールドのアドレスを取得できるようになります。さらに、構造体フィールドに対して InspectStructV を再帰的に呼び出すと、以前はインターフェイス値を保持していた valueField が、ネストされた構造体のリフレクション値を直接指すようになり、アドレスを正しく取得できるようになります。
修正されたコードは次のとおりです。スニペット:
<code class="go">func InspectStructV(val reflect.Value) { if val.Kind() == reflect.Interface && !val.IsNil() { elm := val.Elem() if elm.Kind() == reflect.Ptr && !elm.IsNil() && elm.Elem().Kind() == reflect.Ptr { val = elm } } if val.Kind() == reflect.Ptr { val = val.Elem() } for i := 0; i < val.NumField(); i++ { valueField := val.Field(i) typeField := val.Type().Field(i) address := "not-addressable" if valueField.Kind() == reflect.Interface && !valueField.IsNil() { elm := valueField.Elem() if elm.Kind() == reflect.Ptr && !elm.IsNil() && elm.Elem().Kind() == reflect.Ptr { valueField = elm } } if valueField.Kind() == reflect.Ptr { valueField = valueField.Elem() } if valueField.CanAddr() { address = fmt.Sprintf("0x%X", valueField.Addr().Pointer()) } fmt.Printf("Field Name: %s,\t Field Value: %v,\t Address: %v\t, Field type: %v\t, Field kind: %v\n", typeField.Name, valueField.Interface(), address, typeField.Type, valueField.Kind()) if valueField.Kind() == reflect.Struct { InspectStructV(valueField) } } } func InspectStruct(v interface{}) { InspectStructV(reflect.ValueOf(v)) }</code>
これらの変更を行うことで、非ポインター フィールドがネストされた構造内に存在する場合でも、そのメモリ アドレスを正常に取得できるようになります。
以上がリフレクションを使用して入れ子構造のフィールド アドレスを取得するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Golangは、パフォーマンスとスケーラビリティの点でPythonよりも優れています。 1)Golangのコンピレーションタイプの特性と効率的な並行性モデルにより、高い並行性シナリオでうまく機能します。 2)Pythonは解釈された言語として、ゆっくりと実行されますが、Cythonなどのツールを介してパフォーマンスを最適化できます。

Golangは並行性がCよりも優れていますが、Cは生の速度ではGolangよりも優れています。 1)Golangは、GoroutineとChannelを通じて効率的な並行性を達成します。これは、多数の同時タスクの処理に適しています。 2)Cコンパイラの最適化と標準ライブラリを介して、極端な最適化を必要とするアプリケーションに適したハードウェアに近い高性能を提供します。

speed、効率、およびシンプル性をspeedsped.1)speed:gocompilesquilesquicklyandrunseffictient、理想的なlargeprojects.2)効率:等系dribribraryreducesexexternaldedenciess、開発効果を高める3)シンプルさ:

GolangとPythonにはそれぞれ独自の利点があります。Golangは高性能と同時プログラミングに適していますが、PythonはデータサイエンスとWeb開発に適しています。 Golangは同時性モデルと効率的なパフォーマンスで知られていますが、Pythonは簡潔な構文とリッチライブラリエコシステムで知られています。

Golangは迅速な発展と同時シナリオに適しており、Cは極端なパフォーマンスと低レベルの制御が必要なシナリオに適しています。 1)Golangは、ごみ収集と並行機関のメカニズムを通じてパフォーマンスを向上させ、高配列Webサービス開発に適しています。 2)Cは、手動のメモリ管理とコンパイラの最適化を通じて究極のパフォーマンスを実現し、埋め込みシステム開発に適しています。

GolangとCのパフォーマンスの違いは、主にメモリ管理、コンピレーションの最適化、ランタイム効率に反映されています。 1)Golangのゴミ収集メカニズムは便利ですが、パフォーマンスに影響を与える可能性があります。

goisidealforforbeginnersandsutable forcloudnetworkservicesduetoitssimplicity、andconcurrencyfeatures.1)installgofromtheofficialwebsiteandverify with'goversion'.2)

Cは、ハードウェアリソースと高性能の最適化が必要なシナリオにより適していますが、Golangは迅速な開発と高い並行性処理が必要なシナリオにより適しています。 1.Cの利点は、ハードウェア特性と高い最適化機能に近いものにあります。これは、ゲーム開発などの高性能ニーズに適しています。 2.Golangの利点は、その簡潔な構文と自然な並行性サポートにあり、これは高い並行性サービス開発に適しています。
