複数の \'cat | を実行する方法zgrep\' コマンドを Python で同時に実行しますか?
複数の 'cat | を実行zgrep' コマンドを同時に実行
この Python スクリプトでは、複数の 'cat | zgrep' コマンドが同時に実行されます。 zgrep' コマンドはリモート サーバー上で順次実行され、その出力は処理のために個別に収集されます。ただし、効率を高めるために、これらのコマンドを並列実行することを目指しています。
スレッドを使用しないサブプロセスの使用
マルチプロセッシングまたはスレッドの使用とは対照的に、次のアプローチを使用してサブプロセスを並列実行できます。
<code class="python">#!/usr/bin/env python from subprocess import Popen # create a list of subprocesses processes = [Popen("echo {i:d}; sleep 2; echo {i:d}".format(i=i), shell=True) for i in range(5)] # collect statuses of subprocesses exitcodes = [p.wait() for p in processes]</code>
このコードは 5 つのシェル コマンドを同時に起動し、それらの終了コードを収集します。 Popen はデフォルトでコマンドの完了を待機しないため、このコンテキストでは & 文字は必要ないことに注意してください。ステータスを取得するには、明示的に .wait() を呼び出す必要があります。
出力コレクションを備えたサブプロセス
サブプロセスから出力を順番に収集するのは便利ですが、必要に応じてスレッドを使用して並列収集することもできます。 。次の例を考えてみましょう。
<code class="python">#!/usr/bin/env python from multiprocessing.dummy import Pool # thread pool from subprocess import Popen, PIPE, STDOUT # create a list of subprocesses with output handling processes = [Popen("echo {i:d}; sleep 2; echo {i:d}".format(i=i), shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True) for i in range(5)] # collect outputs in parallel def get_lines(process): return process.communicate()[0].splitlines() outputs = Pool(len(processes)).map(get_lines, processes)</code>
このコードはサブプロセスを並列で実行し、スレッドを使用してその出力を同時に収集します。
非同期ベースの並列実行
Python バージョン 3.8 および上で述べたように、asyncio はサブプロセスを同時に実行するエレガントな方法を提供します。以下に例を示します。
<code class="python">#!/usr/bin/env python3 import asyncio import sys from subprocess import PIPE, STDOUT async def get_lines(shell_command): p = await asyncio.create_subprocess_shell( shell_command, stdin=PIPE, stdout=PIPE, stderr=STDOUT ) return (await p.communicate())[0].splitlines() async def main(): # create a list of coroutines for subprocess execution coros = [get_lines(f'"{sys.executable}" -c "print({i:d}); import time; time.sleep({i:d})"') for i in range(5)] # get subprocess outputs in parallel print(await asyncio.gather(*coros)) if __name__ == "__main__": asyncio.run(main())</code>
このコードは、単一のスレッド内でサブプロセスを同時に実行する方法を示しています。
これらのアプローチを実装すると、複数の ' を実行することでスクリプトの効率を大幅に向上させることができます。猫 | 猫zgrep' コマンドをリモート サーバー上で並行して実行します。
以上が複数の \'cat | を実行する方法zgrep\' コマンドを Python で同時に実行しますか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。
