Python での外れ値の処理 - IQR メソッド
導入
現実世界のデータから洞察を得る前に、データを精査して、データに一貫性があり、エラーがないことを確認することが重要です。ただし、データにはエラーが含まれる可能性があり、一部の値は他の値と異なって見える場合があり、これらの値は外れ値として知られています。異常値はデータ分析に悪影響を及ぼし、誤った洞察をもたらし、利害関係者による不適切な意思決定につながります。したがって、外れ値への対処は、データ サイエンスにおけるデータの前処理段階における重要なステップです。この記事では、外れ値を処理するさまざまな方法を評価します。
外れ値
外れ値は、データセット内の大部分のデータ ポイントと大きく異なるデータ ポイントです。これらは、特定の変数の予想される値または通常の値の範囲外にある値です。外れ値は、データ入力時のエラー、サンプリングエラーなど、さまざまな理由で発生します。機械学習では、外れ値によりモデルが誤った予測を行う可能性があり、その結果、不正確な予測が生じる可能性があります。
Jupyter Notebook を使用したデータセット内の外れ値の検出
- Python ライブラリをインポートする
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore') plt.style.use('ggplot')
- パンダを使用して CSV ファイルをロードします
df_house_price = pd.read_csv(r'C:\Users\Admin\Desktop\csv files\housePrice.csv')
- 住宅価格データセットの最初の 5 行を確認して、データフレームを一目で確認してください
df_house_price.head()
- 箱ひげ図を使用して価格列の外れ値をチェックする
sns.boxplot(df_house_price['Price']) plt.title('Box plot showing outliers in prices') plt.show()
- 箱ひげ図の視覚化から、価格列に異常値が含まれています
- 次に、より適切な意思決定を確実にし、機械学習モデルが正しい予測を行うために、これらの外れ値を処理する方法を考え出す必要があります
IQR 外れ値の処理方法
- IQR メソッドは、四分位範囲がデータの中央半分の広がりを測定することを意味します。これはサンプルの中央の 50% の範囲です。
四分位範囲を使用して外れ値を削除する手順
- データの 25% である第 1 四分位 (Q1) とデータの 75% である第 3 四分位 (Q3) を計算します。
Q1 = df_house_price['Price'].quantile(0.25) Q3 = df_house_price['Price'].quantile(0.75)
- 四分位範囲を計算します
IQR = Q3 - Q1
- 外れ値の境界を決定します。
lower_bound = Q1 - 1.5 * IQR
- 下限は、-5454375000.0 を下回る値は外れ値であることを意味します
upper_bound = Q3 + 1.5 * IQR
上限は、12872625000.0 を超える値は外れ値であることを意味します
価格列の外れ値を削除します
filt = (df_house_price['Price'] >= lower_bound) & (df_house_price['Price'] <= upper_bound) df = df_house_price[filt] df.head()
- 外れ値を除去した後の箱ひげ図
sns.boxplot(df['Price']) plt.title('Box plot after removing outliers') plt.show()
外れ値を処理するさまざまな方法
- Z スコア法
- パーセンタイル キャッピング (Winsorizing)
- トリミング(切り詰め)
- 代入
- クラスタリングベースのメソッド (DBSCAN など)
結論
IQR 手法はシンプルかつ外れ値に対して堅牢であり、正規性の仮定に依存しません。欠点は、一変量データしか処理できないことと、データが歪んでいたり裾が重い場合に有効なデータ ポイントが削除される可能性があることです。
ありがとうございます
詳細については、リンクインと github で私をフォローしてください。
以上がPython での外れ値の処理 - IQR メソッドの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化
