リアルタイム データを使用した ETL プロセスの理解: 抽出、変換、読み込み、視覚化
ETL (抽出、変換、ロード) プロセスは、特にリアルタイム データに基づいた迅速な意思決定が必要なアプリケーションにおいて、データを効率的に管理するための基礎です。この記事では、Binance API からのリアルタイムの暗号通貨取引を含む実際的な例を使用して ETL プロセスについて説明します。提供されている Python コードは、取引データを抽出し、使用可能な形式に変換し、SQLite データベースにロードし、リアルタイム プロットでデータを視覚化する方法を示しています。
サンプル ETL プロジェクト: https://github.com/vcse59/FeatureEngineering/tree/main/Real-Time-CryptoCurrency-Price-Tracker
1.抽出
ETL プロセスの最初のステップは抽出です。これには、さまざまなソースからデータを収集することが含まれます。この場合、データは WebSocket 接続を介して Binance Testnet API に抽出されます。この接続により、BTC/USDT 取引のリアルタイム ストリーミングが可能になります。
コードでの抽出の実装方法は次のとおりです。
with websockets.connect(url) as ws: response = await ws.recv() trade_data = json.loads(response)
受信した各メッセージには、価格、数量、タイムスタンプなどの重要な取引データが含まれており、JSON として形式化されています。
2.変換
データが抽出されると、変換プロセスが実行されます。このステップでは、データをクリーンにして構造化して、より有用なものにします。この例では、変換にはタイムスタンプをミリ秒から読み取り可能な形式に変換し、さらなる処理のためにデータを適切なタイプに編成することが含まれます。
price = float(trade_data['p']) quantity = float(trade_data['q']) timestamp = int(trade_data['T']) trade_time = datetime.fromtimestamp(timestamp / 1000.0)
これにより、価格と数量が浮動小数点として保存され、操作と分析が容易になるようにタイムスタンプが日時オブジェクトに変換されます。
3.ロード
最後のステップは読み込みで、変換されたデータがターゲット データベースに保存されます。私たちのコードでは、SQLite データベースが取引データの記憶媒体として機能します。
読み込みプロセスは次の関数によって管理されます:
def save_trade_to_db(price, quantity, timestamp): conn = sqlite3.connect('trades.db') cursor = conn.cursor() # Create a table if it doesn't exist cursor.execute(''' CREATE TABLE IF NOT EXISTS trades ( id INTEGER PRIMARY KEY AUTOINCREMENT, price REAL, quantity REAL, timestamp TEXT ) ''') # Insert the trade data cursor.execute(''' INSERT INTO trades (price, quantity, timestamp) VALUES (?, ?, ?) ''', (price, quantity, trade_time)) conn.commit() conn.close()
この関数は SQLite データベースに接続し、テーブルが存在しない場合はテーブルを作成し、取引データを挿入します。
4.視覚化
データを保存するだけでなく、より良い理解と意思決定のためにデータを視覚化することが不可欠です。提供されたコードには、リアルタイムで取引をプロットする関数が含まれています:
def plot_trades(): if len(trades) > 0: timestamps, prices, quantities = zip(*trades) plt.subplot(2, 1, 1) plt.cla() # Clear the previous plot for real-time updates plt.plot(timestamps, prices, label='Price', color='blue') plt.ylabel('Price (USDT)') plt.legend() plt.title('Real-Time BTC/USDT Prices') plt.xticks(rotation=45) plt.subplot(2, 1, 2) plt.cla() # Clear the previous plot for real-time updates plt.plot(timestamps, quantities, label='Quantity', color='orange') plt.ylabel('Quantity') plt.xlabel('Time') plt.legend() plt.xticks(rotation=45) plt.tight_layout() # Adjust layout for better spacing plt.pause(0.1) # Pause to update the plot
この関数は 2 つのサブプロットを生成します。1 つは価格、もう 1 つは数量です。 matplotlib ライブラリを使用してデータを動的に視覚化し、ユーザーがリアルタイムで市場動向を観察できるようにします。
結論
この例では ETL プロセスに焦点を当て、WebSocket API からデータを抽出し、分析のために変換し、データベースにロードし、即時のフィードバックのために視覚化する方法を示します。このフレームワークは、取引プラットフォームや市場分析ツールなど、リアルタイム データに基づいて情報に基づいた意思決定を行う必要があるアプリケーションを構築するために不可欠です。
以上がリアルタイム データを使用した ETL プロセスの理解: 抽出、変換、読み込み、視覚化の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。
