用Python编写简单的微博爬虫
先说点题外话,我一开始想使用Sina Weibo API来获取微博内容,但后来发现新浪微博的API限制实在太多,大家感受一下:
只能获取当前授权的用户(就是自己),而且只能返回最新的5条,WTF!
所以果断放弃掉这条路,改为『生爬』,因为PC端的微博是Ajax的动态加载,爬取起来有些困难,我果断知难而退,改为对移动端的微博进行爬取,因为移动端的微博可以通过分页爬取的方式来一次性爬取所有微博内容,这样工作就简化了不少。
最后实现的功能:
1、输入要爬取的微博用户的user_id,获得该用户的所有微博
2、文字内容保存到以%user_id命名文本文件中,所有高清原图保存在weibo_image文件夹中
具体操作:
首先我们要获得自己的cookie,这里只说chrome的获取方法。
1、用chrome打开新浪微博移动端
2、option+command+i调出开发者工具
3、点开Network,将Preserve log选项选中
4、输入账号密码,登录新浪微博
5、找到m.weibo.cn->Headers->Cookie,把cookie复制到代码中的#your cookie处
然后再获取你想爬取的用户的user_id,这个我不用多说啥了吧,点开用户主页,地址栏里面那个号码就是user_id
将python代码保存到weibo_spider.py文件中
定位到当前目录下后,命令行执行python weibo_spider.py user_id
当然如果你忘记在后面加user_id,执行的时候命令行也会提示你输入
最后执行结束
小问题:在我的测试中,有的时候会出现图片下载失败的问题,具体原因还不是很清楚,可能是网速问题,因为我宿舍的网速实在太不稳定了,当然也有可能是别的问题,所以在程序根目录下面,我还生成了一个userid_imageurls的文本文件,里面存储了爬取的所有图片的下载链接,如果出现大片的图片下载失败,可以将该链接群一股脑导进迅雷等下载工具进行下载。
另外,我的系统是OSX EI Capitan10.11.2,Python的版本是2.7,依赖库用sudo pip install XXXX就可以安装,具体配置问题可以自行stackoverflow,这里就不展开讲了。
下面我就给出实现代码
#-*-coding:utf8-*- import re import string import sys import os import urllib import urllib2 from bs4 import BeautifulSoup import requests from lxml import etree reload(sys) sys.setdefaultencoding('utf-8') if(len(sys.argv)>=2): user_id = (int)(sys.argv[1]) else: user_id = (int)(raw_input(u"请输入user_id: ")) cookie = {"Cookie": "#your cookie"} url = 'http://weibo.cn/u/%d?filter=1&page=1'%user_id html = requests.get(url, cookies = cookie).content selector = etree.HTML(html) pageNum = (int)(selector.xpath('//input[@name="mp"]')[0].attrib['value']) result = "" urllist_set = set() word_count = 1 image_count = 1 print u'爬虫准备就绪...' for page in range(1,pageNum+1): #获取lxml页面 url = 'http://weibo.cn/u/%d?filter=1&page=%d'%(user_id,page) lxml = requests.get(url, cookies = cookie).content #文字爬取 selector = etree.HTML(lxml) content = selector.xpath('//span[@class="ctt"]') for each in content: text = each.xpath('string(.)') if word_count>=4: text = "%d :"%(word_count-3) +text+"\n\n" else : text = text+"\n\n" result = result + text word_count += 1 #图片爬取 soup = BeautifulSoup(lxml, "lxml") urllist = soup.find_all('a',href=re.compile(r'^http://weibo.cn/mblog/oripic',re.I)) first = 0 for imgurl in urllist: urllist_set.add(requests.get(imgurl['href'], cookies = cookie).url) image_count +=1 fo = open("/Users/Personals/%s"%user_id, "wb") fo.write(result) word_path=os.getcwd()+'/%d'%user_id print u'文字微博爬取完毕' link = "" fo2 = open("/Users/Personals/%s_imageurls"%user_id, "wb") for eachlink in urllist_set: link = link + eachlink +"\n" fo2.write(link) print u'图片链接爬取完毕' if not urllist_set: print u'该页面中不存在图片' else: #下载图片,保存在当前目录的pythonimg文件夹下 image_path=os.getcwd()+'/weibo_image' if os.path.exists(image_path) is False: os.mkdir(image_path) x=1 for imgurl in urllist_set: temp= image_path + '/%s.jpg' % x print u'正在下载第%s张图片' % x try: urllib.urlretrieve(urllib2.urlopen(imgurl).geturl(),temp) except: print u"该图片下载失败:%s"%imgurl x+=1 print u'原创微博爬取完毕,共%d条,保存路径%s'%(word_count-4,word_path) print u'微博图片爬取完毕,共%d张,保存路径%s'%(image_count-1,image_path)
一个简单的微博爬虫就完成了,希望对大家的学习有所帮助。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

PythonコードをSublimeテキストで実行するには、最初にPythonプラグインをインストールし、次に.pyファイルを作成してコードを書き込み、Ctrl Bを押してコードを実行する必要があります。コードを実行すると、出力がコンソールに表示されます。

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

Golangは、パフォーマンスとスケーラビリティの点でPythonよりも優れています。 1)Golangのコンピレーションタイプの特性と効率的な並行性モデルにより、高い並行性シナリオでうまく機能します。 2)Pythonは解釈された言語として、ゆっくりと実行されますが、Cythonなどのツールを介してパフォーマンスを最適化できます。

Visual Studioコード(VSCODE)でコードを作成するのはシンプルで使いやすいです。 VSCODEをインストールし、プロジェクトの作成、言語の選択、ファイルの作成、コードの書き込み、保存して実行します。 VSCODEの利点には、クロスプラットフォーム、フリーおよびオープンソース、強力な機能、リッチエクステンション、軽量で高速が含まれます。

メモ帳でPythonコードを実行するには、Python実行可能ファイルとNPPEXECプラグインをインストールする必要があります。 Pythonをインストールしてパスを追加した後、nppexecプラグインでコマンド「python」とパラメーター "{current_directory} {file_name}"を構成して、メモ帳のショートカットキー「F6」を介してPythonコードを実行します。
