ホームページ データベース mysql チュートリアル 超越Hadoop的大数据分析之前言

超越Hadoop的大数据分析之前言

Jun 07, 2016 pm 04:34 PM
da hadoop 序文 データ分析 超越する

本文翻译自《BIG DATA ANALYTICS BEYOND HADOOP》译者:吴京润 校对:方腾飞 我试图给人们学习大数据留下的一点深刻印象:尽管Apache Hadoop很有用,而且是一项非常成功的技术,但是这一观点的前提已经有些过时了。考虑一下这样一条时间线:由谷歌实现的MapR

本文翻译自《BIG DATA ANALYTICS BEYOND HADOOP》译者:吴京润 校对:方腾飞

我试图给人们学习大数据留下的一点深刻印象:尽管Apache Hadoop很有用,而且是一项非常成功的技术,但是这一观点的前提已经有些过时了。考虑一下这样一条时间线:由谷歌实现的MapReduce投入使用的时间可追溯到2002年,发表于2004年。Yahoo!于2006年发起Hadoop项目。MR是基于十年前的数据中心的经济上的考虑。从那时以来,已经有太多的东西发生了变化:多核心处理器、大内存地址空间、10G网络带宽、SSD,而至今,这已经产生足够的成本效益。这些极大改变了在构建可容错分布式商用系统规模方面的取舍。

此外,我们对于可处理数据的规模的观念也发生了变化。成功的公司诸如亚马逊、eBay、谷歌,它们想要更上一层楼,也促使随后的商业领袖重新思考:数据可以用来做什么?举个例子,十年前是否有为大型图书出版商优化业务的大规模图论用例?不见得有。出版社高层不可能有耐心听取这样一个古怪的工程建议。这本书本身的营销将基于大规模数据、开源、图论引擎,它们也将在本书后续章节讲到。同样的,广告科技和社交网络应用驱动着开发技术,而如今在工业化的因特网,采用Hadoop将显的捉襟见肘,也就是所谓的“物联网”——在某些情况下,会有几个数量级的差距。

自从MR的商用硬件规模首次制定以来,底层系统的模型已发生了巨大变化。我们的商业需求与期望模型也发生了显著的变化。此外,应用数学的数据规模与十年前的构想也有巨大的差异。如今主流编程语言也能为并行处理的软件工程实践提供更好的支持。

Agneeswaran博士认为这些视图,以及对它们的更多关注和系统方法,呈现了如今大数据环境的全景视图,甚至还有超越。本书引领我们看到过去十年如何通过MapReduce做批处理数据分析。这些章节介绍了理解它们的关键历史背景,并为应用这些技术提供了清晰的商业用例的至关重要的方面。这些论据为每个用例提供了分析,并指出为什么Hadoop不是很适合应用于此——通过对例证的彻底研究、对可用开源技术的出色调查、以及对非开源项目的出版文献的回顾。

本书研究了如今的商业需求中除Hadoop以外的最佳实践以及数据访问方式的可用技术:迭代、流式处理(译者注:原文是streaming)、图论,以及其它技术。比如,一些企业的收入损失计算可精确到毫秒级,以至于“批处理窗口”这样的概念变的毫无意义。实时分析是惟一可以想到的可行方案。开源框架诸如Apache Spark、Storm、Titan、GraphLab,还有Apache Mesos可以满足这些需求。Agneeswaran博士引导读者们了解这些框架的架构和计算模型、研究通用设计模式。他在书中提到了业务范围的影响以及实现细节还有代码样例。

伴随着这些框架,本书也为开放标准预测模型标记语言提出了一个引人入胜的例子,使得预测模型可以在不同平台与环境之间迁移。本书还提到YARN以及下一代超越MapReduce的模型。

这正是当今业界的焦点——Hadoop基于2002年以来的IT经济,然而更新的框架与当代业界的用例更为密切。另外,本书既提供了专家指导,也热烈欢迎由大数据分析开启的无限可能。

Paco Nathan

图书《Enterprise Data Workflows with Cascading》的作者 ? (校对注:样章下载)

Zettacap的顾问以及Amplify的合作伙伴

(全文完)如果您喜欢此文请点赞,分享,评论。


  • 原创文章转载请注明出处:超越Hadoop的大数据分析之前言
  • 小额赞助本站::我要赞助

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

CSV ファイルを読み取り、pandas を使用してデータ分析を実行する CSV ファイルを読み取り、pandas を使用してデータ分析を実行する Jan 09, 2024 am 09:26 AM

Pandas は、さまざまな種類のデータ ファイルを簡単に読み取り、処理できる強力なデータ分析ツールです。その中でも、CSV ファイルは最も一般的でよく使用されるデータ ファイル形式の 1 つです。この記事では、Pandas を使用して CSV ファイルを読み取り、データ分析を実行する方法と、具体的なコード例を紹介します。 1. 必要なライブラリをインポートする まず、以下に示すように、Pandas ライブラリと必要になる可能性のあるその他の関連ライブラリをインポートする必要があります。 importpandasaspd 2. Pan を使用して CSV ファイルを読み取ります。

データ分析手法の紹介 データ分析手法の紹介 Jan 08, 2024 am 10:22 AM

一般的なデータ分析手法: 1. 比較分析手法; 2. 構造分析手法; 3. クロス分析手法; 4. 傾向分析手法; 5. 因果分析手法; 6. 関連分析手法; 7. クラスター分析手法; 8 , 主成分分析法; 9. 散布分析法; 10. マトリックス分析法。詳細な紹介: 1. 比較分析手法: 2 つ以上のデータを比較分析して、相違点やパターンを見つける手法; 2. 構造分析手法: 全体の各部分と全体を比較分析する手法; 3. クロス分析手法、など。

データ サイエンティストが 95% の時間使用する 11 の基本ディストリビューション データ サイエンティストが 95% の時間使用する 11 の基本ディストリビューション Dec 15, 2023 am 08:21 AM

前回の「データ サイエンティストが 95% の時間使用する 11 個の基本チャート」に続き、今日はデータ サイエンティストが 95% の時間使用する 11 個の基本ディストリビューションをお届けします。これらの分布をマスターすることで、データの性質をより深く理解し、データ分析や意思決定の際により正確な推論や予測を行うことができます。 1. 正規分布 正規分布はガウス分布としても知られ、連続確率分布です。平均 (μ) を中心、標準偏差 (σ) を幅とした対称な釣鐘型の曲線を持ちます。正規分布は、統計学、確率論、工学などの多くの分野で重要な応用価値があります。

ECharts と PHP インターフェイスを使用してデータ分析と統計グラフの予測を実装する方法 ECharts と PHP インターフェイスを使用してデータ分析と統計グラフの予測を実装する方法 Dec 17, 2023 am 10:26 AM

ECharts と PHP インターフェイスを使用して統計グラフのデータ分析と予測を実装する方法。データ分析と予測はさまざまな分野で重要な役割を果たします。データの傾向とパターンを理解し、将来の意思決定の参考にすることができます。 ECharts は、PHP インターフェイスを使用してデータを動的にロードして処理できる、豊富で柔軟なグラフ コンポーネントを提供するオープン ソース データ視覚化ライブラリです。この記事では、EChartsとphpインターフェースに基づいた統計グラフデータの分析と予測の実装方法を紹介し、提供します

Go言語を使用した機械学習とデータ分析 Go言語を使用した機械学習とデータ分析 Nov 30, 2023 am 08:44 AM

今日のインテリジェント社会では、機械学習とデータ分析は、人々が大量のデータをより深く理解し、活用できるようになる不可欠なツールです。こうした分野でもGo言語は注目を集めているプログラミング言語となっており、その高速性と効率性から多くのプログラマーに選ばれています。この記事では、機械学習やデータ分析に Go 言語を使用する方法を紹介します。 1. 機械学習のエコシステム Go 言語は、Python や R ほど豊富ではありません。しかし、より多くの人が Go 言語を使い始めるにつれて、一部の機械学習ライブラリとフレームワークが

おすすめのデータ分析サイトは何ですか? おすすめのデータ分析サイトは何ですか? Mar 13, 2024 pm 05:44 PM

推奨: 1. ビジネス データ分析フォーラム; 2. 全国人民代表大会経済フォーラム - 計量経済統計分野; 3. 中国統計フォーラム; 4. データ マイニング学習および交換フォーラム; 5. データ分析フォーラム; 6. ウェブサイト データ分析; 7 . データ分析; 8. データマイニング研究所; 9. S-PLUS、R 統計フォーラム。

Excelデータの統合分析 Excelデータの統合分析 Mar 21, 2024 am 08:21 AM

1. このレッスンでは、Excel の統合データ分析について説明します。ケースを通して完成させます。教材を開いて、セル E2 をクリックして数式を入力します。 2. 次に、セル E53 を選択して、以下のすべてのデータを計算します。 3. 次に、セル F2 をクリックし、計算する数式を入力します。同様に、下にドラッグすると、必要な値を計算できます。 4. セル G2 を選択し、「データ」タブをクリックし、「データ検証」をクリックして、選択して確認します。 5. 同じ方法を使用して、計算が必要な下のセルを自動的に入力してみましょう。 6. 次に、実際の賃金を計算し、セル H2 を選択して数式を入力します。 7. 次に、値のドロップダウン メニューをクリックして、他の数値をクリックします。

ビッグデータの分野での Java の応用を探る: Hadoop、Spark、Kafka、その他のテクノロジー スタックについて理解する ビッグデータの分野での Java の応用を探る: Hadoop、Spark、Kafka、その他のテクノロジー スタックについて理解する Dec 26, 2023 pm 02:57 PM

Java ビッグ データ テクノロジ スタック: Hadoop、Spark、Kafka などのビッグ データ分野における Java のアプリケーションを理解します。データ量が増加し続けるにつれて、今日のインターネット時代ではビッグ データ テクノロジが注目のトピックになっています。ビッグデータの分野では、Hadoop、Spark、Kafka などのテクノロジーの名前をよく耳にします。これらのテクノロジーは重要な役割を果たしており、広く使用されているプログラミング言語である Java もビッグデータの分野で大きな役割を果たしています。この記事では、Java のアプリケーション全般に​​焦点を当てます。

See all articles