Maison développement back-end Tutoriel Python Ce modèle de méta-programmation d'exécution en Python est intéressant

Ce modèle de méta-programmation d'exécution en Python est intéressant

Dec 23, 2024 pm 09:40 PM

This Runtime Meta-Programming Pattern in Python is Interesting

Arrière-plan

Je travaille actuellement sur un framework d'interface utilisateur construit sur Pyodide, appelé Zenaura. Récemment, j'ai remarqué que l'interface du constructeur – la principale façon dont les utilisateurs créent des éléments d'interface utilisateur – était un peu trop complexe et peu attrayante. Bien qu'il fasse abstraction de l'interface sous-jacente, plus lourde, pour interagir avec la structure de données virtuelle DOM "Node" de Zenaura, cela n'était toujours pas satisfaisant. Je voulais simplifier les choses et offrir aux utilisateurs une expérience plus propre et plus intuitive, tout en jetant les bases du développement potentiel d'un compilateur pour une syntaxe complètement nouvelle. Quelque chose comme ça :

div(attr1=val1, child1, child2, child3)
Copier après la connexion

Énoncé du problème

L'interface actuelle du constructeur est de trop bas niveau et peu conviviale. Les utilisateurs ne devraient pas avoir à interagir avec quelque chose comme ceci :

builder = Builder(name__)
if children:
    builder.with_children(*children)
if attributes:
    builder.with_attributes(**attributes)
if text:
    builder.with_text(text)
# print("data", builder.node.children, builder.node.attributes)
return builder.build()
Copier après la connexion

Au lieu de cela, ils devraient pouvoir utiliser une syntaxe plus propre et plus lisible comme :

div(id="some-id", h1("text"), p("text"))
Copier après la connexion

En regardant la documentation MDN, il y a 91 balises HTML, avec possibilité d'ajouts ou de dépréciations. J'ai d'abord envisagé de générer dynamiquement le code pour simplifier ce processus, mais même si cela fonctionne, ce n'est pas la solution la plus pratique. L'objectif principal était d'afficher des docstrings chaque fois qu'un utilisateur appelle une fonction, mais l'approche générée dynamiquement introduit certains défis, tels qu'un manque d'auto-complétion.

L'approche dynamique

Voici le code généré dynamiquement que j'ai expérimenté :

tag_config = {
    # root elements
    "html": "nestable",
    "main": "nestable",
    "body": "nestable",
}

tags_factory = {
    "nestable": lambda name__: f"""
{name__} = partial(nestable, "{name__}")
{name__}.__doc__ = nestable.__doc__
""",
    "textable": lambda name__: f"""
{name__} = partial(textable, "{name__}")
""",
    "self_closing": lambda name__: f"""
{name__} = partial(self_closing, "{name__}")
""",
    "nestable_no_attrs": lambda name__: f"""
{name__} = partial(nestable_no_attrs, "{name__}")
"""
}

for k, v in tag_config.items():
    exec(tags_factory[v](k), globals())
Copier après la connexion

Cela fonctionne bien en termes de fonctionnalité mais manque de convivialité. Le principal inconvénient est l’absence de saisie semi-automatique, puisque le code est injecté au moment de l’exécution. Cependant, les balises HTML elles-mêmes sont relativement simples, ce n'est donc pas vraiment un problème pour le moment.

Avantages et limites

L'un des avantages significatifs de cette approche est la flexibilité. Prendre en charge ou déprécier un élément HTML dans Zenaura est aussi simple que d'ajouter ou de supprimer une paire clé-valeur du dictionnaire tag_config. C'est un moyen simple de s'adapter aux modifications des balises HTML au fil du temps.

De plus, les seules limitations concernent la saisie semi-automatique et l'affichage des chaînes de documentation aux utilisateurs. Je pense que c'est un compromis à faire car les éléments HTML sont assez basiques.

Cependant, le compromis se présente sous la forme d'une convivialité : sans la saisie semi-automatique, les utilisateurs peuvent être confrontés à des difficultés lorsqu'ils interagissent avec l'interface. Cela dit, je pense que c'est un bon point de départ pour expérimenter de nouvelles façons de gérer les éléments de balise dans Zenaura.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Grow A Garden - Guide de mutation complet
4 Il y a quelques semaines By DDD
<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Système de fusion, expliqué
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
<🎜> Obscur: Expedition 33 - Comment obtenir des catalyseurs de chrome parfaits
2 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1677
14
Tutoriel PHP
1278
29
Tutoriel C#
1257
24
Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python vs. C: Explorer les performances et l'efficacité Python vs. C: Explorer les performances et l'efficacité Apr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python vs C: Comprendre les principales différences Python vs C: Comprendre les principales différences Apr 21, 2025 am 12:18 AM

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Python pour l'informatique scientifique: un look détaillé Python pour l'informatique scientifique: un look détaillé Apr 19, 2025 am 12:15 AM

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Python pour le développement Web: applications clés Python pour le développement Web: applications clés Apr 18, 2025 am 12:20 AM

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

See all articles