Maison développement back-end Tutoriel Python Un voyage vers la simplification de l'apprentissage automatique

Un voyage vers la simplification de l'apprentissage automatique

Dec 23, 2024 pm 08:45 PM

A Journey into Machine Learning Simplification

Lancer un projet d'apprentissage automatique peut sembler écrasant, comme résoudre un gros casse-tête. Bien que je sois engagé dans mon parcours d'apprentissage automatique depuis un certain temps maintenant, je suis ravi de commencer à enseigner et à guider d'autres personnes désireuses d'apprendre. Aujourd'hui, je vais vous montrer comment créer votre premier pipeline de Machine Learning (ML) ! Cet outil simple mais puissant vous aidera à créer et organiser efficacement des modèles ML. Allons-y.

Le problème : gérer le flux de travail d'apprentissage automatique
Lorsque j'ai débuté avec l'apprentissage automatique, l'un des défis auxquels j'ai été confronté était de m'assurer que mon flux de travail était structuré et reproductible. La mise à l’échelle des fonctionnalités, la formation des modèles et l’élaboration de prédictions semblaient souvent être des étapes décousues – sujettes à l’erreur humaine si elles étaient gérées manuellement à chaque fois. C’est là qu’intervient le concept de pipeline.

Un pipeline ML vous permet de séquencer plusieurs étapes de traitement ensemble, garantissant ainsi la cohérence et réduisant la complexité. Avec la bibliothèque Python scikit-learn, créer un pipeline est simple et oserais-je dire, délicieux !

Les ingrédients du pipeline
Voici le code qui a donné vie à mon pipeline ML :

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_classification
import numpy as np
from sklearn.model_selection import train_test_split


steps = [("Scaling", StandardScaler()),("classifier",LogisticRegression())]
pipe = Pipeline(steps)
pipe

X,y = make_classification(random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)


pipe.fit(X_train, y_train)

pipe.predict(X_test)

pipe.score(X_test, y_test)
Copier après la connexion

Décomposons-le :

Préparation des données : J'ai généré des données de classification synthétiques à l'aide de make_classification. Cela m'a permis de tester le pipeline sans avoir besoin d'un ensemble de données externe.
Étapes du pipeline : Le pipeline se compose de deux composants principaux :
StandardScaler : garantit que toutes les fonctionnalités sont mises à l'échelle pour avoir une moyenne et une variance unitaire nulles.
LogisticRegression : Un classificateur simple mais puissant pour prédire les résultats binaires.
Formation et évaluation : À l'aide du pipeline, j'ai formé le modèle et évalué ses performances en un seul flux transparent. La méthode pipe.score() a fourni un moyen rapide de mesurer la précision du modèle.
Ce que vous pouvez apprendre
Construire ce pipeline est plus qu’un simple exercice ; c'est l'occasion d'apprendre les concepts clés du ML :

La modularité est importante : Les pipelines modularisent le flux de travail d'apprentissage automatique, ce qui facilite l'échange de composants (par exemple, en essayant un autre scaler ou classificateur).
La reproductibilité est la clé : En standardisant le prétraitement et la formation des modèles, les pipelines minimisent le risque d'erreurs lors de la réutilisation ou du partage du code.
Augmentation de l'efficacité : L'automatisation des tâches répétitives telles que la mise à l'échelle et la prédiction permet de gagner du temps et garantit la cohérence entre les expériences.
Résultats et réflexions
Le pipeline a bien fonctionné sur mon ensemble de données synthétiques, atteignant un score de précision de plus de 90 %. Bien que ce résultat ne soit pas révolutionnaire, l’approche structurée donne la confiance nécessaire pour aborder des projets plus complexes.

Ce qui m'excite le plus, c'est de partager ce processus avec les autres. Si vous débutez, ce pipeline est votre première étape vers la maîtrise des workflows d'apprentissage automatique. Et pour ceux qui revisitent les fondamentaux, c’est une belle remise à niveau.

Voici ce que vous pouvez explorer ensuite :

  • Expérimentez avec des étapes de prétraitement plus complexes, comme la sélection de fonctionnalités ou l'encodage de variables catégorielles.
  • Utilisez d'autres algorithmes, tels que des arbres de décision ou des modèles d'ensemble, dans le cadre du pipeline.
  • Explorez des techniques avancées telles que le réglage des hyperparamètres à l'aide de GridSearchCV combiné à des pipelines.
  • La création de ce pipeline marque le début d’un voyage partagé – un voyage qui promet d’être aussi fascinant que stimulant. Que vous appreniez à mes côtés ou que vous revisitiez les fondamentaux.

Continuons à grandir ensemble, un pipeline à la fois !

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1663
14
Tutoriel PHP
1266
29
Tutoriel C#
1239
24
Python vs C: applications et cas d'utilisation comparés Python vs C: applications et cas d'utilisation comparés Apr 12, 2025 am 12:01 AM

Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Le plan Python de 2 heures: une approche réaliste Le plan Python de 2 heures: une approche réaliste Apr 11, 2025 am 12:04 AM

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python: jeux, GUIS, et plus Python: jeux, GUIS, et plus Apr 13, 2025 am 12:14 AM

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Combien de python pouvez-vous apprendre en 2 heures? Combien de python pouvez-vous apprendre en 2 heures? Apr 09, 2025 pm 04:33 PM

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et temps: tirer le meilleur parti de votre temps d'étude Python et temps: tirer le meilleur parti de votre temps d'étude Apr 14, 2025 am 12:02 AM

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python: Explorer ses applications principales Python: Explorer ses applications principales Apr 10, 2025 am 09:41 AM

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

See all articles