


Comment identifier efficacement les lignes uniques dans les DataFrames Pandas lors de la comparaison de deux DataFrames ?
Obtention de lignes uniques dans les DataFrames Pandas
Étant donné deux dataframes Pandas, il est souvent nécessaire d'identifier les lignes qui existent dans un seul d'entre eux. Ceci peut être réalisé efficacement en utilisant une opération de fusion.
Par exemple, considérons les dataframes suivants :
df1 = pd.DataFrame(data={'col1': [1, 2, 3, 4, 5, 3], 'col2': [10, 11, 12, 13, 14, 10]}) df2 = pd.DataFrame(data={'col1': [1, 2, 3], 'col2': [10, 11, 12]})
Pour obtenir des lignes de df1 qui ne sont pas présentes dans df2, nous pouvons effectuer une jointure à gauche entre df1 et df2. Pour garantir que chaque ligne de df1 correspond à exactement une ligne de df2, nous devons d'abord supprimer les lignes en double de df2. Nous pouvons le faire en utilisant la fonction drop_duplicates().
df_all = df1.merge(df2.drop_duplicates(), on=['col1', 'col2'], how='left', indicator=True)
La trame de données df_all résultante aura une colonne supplémentaire nommée _merge qui indique si chaque ligne provient à la fois de df1 et df2 (« les deux »), de df1 uniquement ("left_only"), ou de df2 uniquement ("right_only").
col1 col2 _merge 0 1 10 both 1 2 11 both 2 3 12 both 3 4 13 left_only 4 5 14 left_only 5 3 10 left_only
Pour extraire les lignes de df1 qui ne sont pas présents dans df2, on peut simplement sélectionner les lignes où _merge est égal à 'left_only' :
rows_not_in_df2 = df_all[df_all['_merge'] == 'left_only']
col1 col2 0 4 13 1 5 14 2 3 10
Éviter les approches incorrectes
Il est important d’éviter les solutions incorrectes qui ne prennent pas en compte les lignes dans leur ensemble. Certaines solutions vérifient uniquement si chaque valeur individuelle d'une ligne existe dans l'autre dataframe, ce qui peut conduire à des résultats incorrects.
Par exemple, si nous avions ajouté une autre ligne à df1 avec les données [3, 10], qui est également présent dans df2, les approches incorrectes l'identifieraient toujours comme n'étant pas présent dans df2 car il a des valeurs différentes dans les deux colonnes. Cependant, notre approche l'identifiera correctement comme n'étant pas présent car il est déjà dans df2 avec les mêmes valeurs pour les deux colonnes.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.
