Maison développement back-end Tutoriel Python Déploiement d'un générateur de collection MongoDB sur Kubernetes

Déploiement d'un générateur de collection MongoDB sur Kubernetes

Nov 03, 2024 am 03:54 AM

Créer un utilitaire pour générer 100 collections MongoDB, chacune remplie de 1 million de documents aléatoires, et le déployer sur Kubernetes implique plusieurs étapes. Ce guide décrit le processus, depuis la configuration d'un environnement Kubernetes jusqu'à la génération des collections et le déploiement de la tâche dans un espace de noms dédié.

Deploying a MongoDB Collection Generator on Kubernetes

1. Configuration de votre environnement Kubernetes

Assurez-vous d'avoir un cluster Kubernetes (tel que GKE, EKS, AKS ou Minikube) et configurez kubectl pour s'y connecter.

2. Créez un espace de noms dédié

Pour garder ce déploiement isolé, créez un espace de noms appelé my-lab :

kubectl create namespace my-lab
kubectl get ns my-lab
Copier après la connexion

3. Déployez MongoDB sur Kubernetes

Créer un volume persistant (PV)

Créez un fichier mongo-pv.yaml pour définir un volume persistant pour les données MongoDB :

apiVersion: v1
kind: PersistentVolume
metadata:
  name: mongo-pv
  namespace: my-lab
spec:
  capacity:
    storage: 10Gi
  accessModes:
    - ReadWriteOnce
  hostPath:
    path: /data/mongo
Copier après la connexion

Appliquer le PV :

kubectl apply -f mongo-pv.yaml
Copier après la connexion

Créer une réclamation de volume persistant (PVC)

Définissez une réclamation de volume persistante dans mongo-pvc.yaml :

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mongo-pvc
  namespace: my-lab
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 10Gi
Copier après la connexion

Appliquer le PVC :

kubectl apply -f mongo-pvc.yaml
Copier après la connexion

Créer un déploiement MongoDB

Définissez le déploiement et le service MongoDB dans mongo-deployment.yaml :

apiVersion: apps/v1
kind: Deployment
metadata:
  name: mongo
  namespace: my-lab
spec:
  replicas: 1
  selector:
    matchLabels:
      app: mongo
  template:
    metadata:
      labels:
        app: mongo
    spec:
      containers:
        - name: mongo
          image: mongo:latest
          ports:
            - containerPort: 27017
          env:
            - name: MONGO_INITDB_ROOT_USERNAME
              value: "root"
            - name: MONGO_INITDB_ROOT_PASSWORD
              value: "password"
          volumeMounts:
            - name: mongo-storage
              mountPath: /data/db
      volumes:
        - name: mongo-storage
          persistentVolumeClaim:
            claimName: mongo-pvc
---
apiVersion: v1
kind: Service
metadata:
  name: mongo
  namespace: my-lab
spec:
  type: ClusterIP
  ports:
    - port: 27017
      targetPort: 27017
  selector:
    app: mongo
Copier après la connexion

Appliquer le déploiement :

kubectl apply -f mongo-deployment.yaml
Copier après la connexion

4. Connectez-vous à MongoDB

Vérifiez le déploiement de MongoDB en vous y connectant :

kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password
Copier après la connexion
Copier après la connexion

5. Vérifier la persistance

Réduisez puis sauvegardez le déploiement de MongoDB pour garantir la persistance des données :

kubectl scale deployment mongo --replicas=0 -n my-lab
kubectl scale deployment mongo --replicas=1 -n my-lab
Copier après la connexion

6. Créez un utilitaire Python pour la génération de collections

À l'aide de Python, définissez un script pour créer des collections et les remplir avec des documents aléatoires :

import random
import string
import pymongo
from pymongo import MongoClient

def random_string(length=10):
    return ''.join(random.choices(string.ascii_letters + string.digits, k=length))

def create_collections_and_populate(db_name='mydatabase', collections_count=100, documents_per_collection=1_000_000):
    client = MongoClient('mongodb://root:password@mongo:27017/')
    db = client[db_name]

    for i in range(collections_count):
        collection_name = f'collection_{i+1}'
        collection = db[collection_name]
        print(f'Creating collection: {collection_name}')

        bulk_data = [{'name': random_string(), 'value': random.randint(1, 100)} for _ in range(documents_per_collection)]
        collection.insert_many(bulk_data)
        print(f'Inserted {documents_per_collection} documents into {collection_name}')

if __name__ == "__main__":
    create_collections_and_populate()
Copier après la connexion

7. Dockeriser l'utilitaire Python

Créez un Dockerfile pour conteneuriser le script Python :

FROM python:3.9-slim

WORKDIR /app
COPY mongo_populator.py .
RUN pip install pymongo

CMD ["python", "mongo_populator.py"]
Copier après la connexion

Créez et transférez l'image vers un registre de conteneurs :

docker build -t <your-docker-repo>/mongo-populator:latest .
docker push <your-docker-repo>/mongo-populator:latest
Copier après la connexion

8. Créer une tâche Kubernetes

Définissez un travail dans mongo-populator-job.yaml pour exécuter le script de génération de collection :

apiVersion: batch/v1
kind: Job
metadata:
  name: mongo-populator
  namespace: my-lab
spec:
  template:
    spec:
      containers:
        - name: mongo-populator
          image: <your-docker-repo>/mongo-populator:latest
          env:
            - name: MONGO_URI
              value: "mongodb://root:password@mongo:27017/"
      restartPolicy: Never
  backoffLimit: 4
Copier après la connexion

Postuler le poste :

kubectl apply -f mongo-populator-job.yaml
Copier après la connexion

9. Vérifier la génération de la collection

Une fois le travail terminé, connectez-vous à MongoDB pour examiner les données :

kubectl exec -it <mongo-pod-name> -n my-lab -- mongosh -u root -p password
Copier après la connexion
Copier après la connexion

Dans MongoDB :

use mydatabase
show collections
db.collection_9.find().limit(5).pretty()

db.getCollectionNames().forEach(function(collection) {
     var count = db[collection].countDocuments();
     print(collection + ": " + count + " documents");
 });

Copier après la connexion

Chaque collection doit contenir 1 million de documents, confirmant que le travail de génération de données a réussi.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
Nordhold: Système de fusion, expliqué
4 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1672
14
Tutoriel PHP
1277
29
Tutoriel C#
1257
24
Python vs C: courbes d'apprentissage et facilité d'utilisation Python vs C: courbes d'apprentissage et facilité d'utilisation Apr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante? Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python vs. C: Explorer les performances et l'efficacité Python vs. C: Explorer les performances et l'efficacité Apr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python vs C: Comprendre les principales différences Python vs C: Comprendre les principales différences Apr 21, 2025 am 12:18 AM

Python et C ont chacun leurs propres avantages, et le choix doit être basé sur les exigences du projet. 1) Python convient au développement rapide et au traitement des données en raison de sa syntaxe concise et de son typage dynamique. 2) C convient à des performances élevées et à une programmation système en raison de son typage statique et de sa gestion de la mémoire manuelle.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux? Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Python: automatisation, script et gestion des tâches Python: automatisation, script et gestion des tâches Apr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Python pour l'informatique scientifique: un look détaillé Python pour l'informatique scientifique: un look détaillé Apr 19, 2025 am 12:15 AM

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Python pour le développement Web: applications clés Python pour le développement Web: applications clés Apr 18, 2025 am 12:20 AM

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

See all articles