Écriture de pièces et éléments de texte rationalisés
Getting Started with Streamlit: A Beginner's Guide
Code can be found here: GitHub - jamesbmour/blog_tutorials:
Video version of blog can be found here: https://youtu.be/EQcqNW7Nw7M
Introduction
Streamlit is an open-source app framework that allows you to create beautiful, interactive web applications with minimal effort. If you’re a data scientist, machine learning engineer, or anyone working with data, Streamlit is the perfect tool to turn your Python scripts into interactive apps quickly. In this tutorial, we will dive into the basics of Streamlit by exploring some of its powerful features, such as st.write(), magic commands, and text elements.
Let’s get started by building a simple app to demonstrate these functionalities!
Setting Up Your Streamlit Environment
Before we jump into the code, make sure you have Streamlit installed. If you haven't installed it yet, you can do so with the following command:
pip install streamlit
Now, let’s start coding our first Streamlit app.
Building Your First Streamlit App
1. Adding a Title to Your App
Streamlit makes it incredibly easy to add titles and headings to your app. The st.title() function allows you to display a large title at the top of your application, which serves as the main heading.
import streamlit as st st.title("Introduction to Streamlit: Part 1")
This will display a large, bold title at the top of your app.
Streamlit Write Elements
Using st.write() for Versatile Output
The st.write() function is one of the most versatile functions in Streamlit. You can use it to display almost anything, including text, data frames, charts, and more—all with a single line of code.
Displaying a DataFrame
Let's start by displaying a simple DataFrame using st.write().
import pandas as pd df = pd.DataFrame({ "Column 1": [1, 2, 3, 4], "Column 2": [10, 20, 30, 40] }) st.write("DataFrame using st.write() function") st.write(df)
This code creates a DataFrame with two columns and displays it directly in your app. The beauty of st.write() is that it automatically formats the DataFrame into a neat table, complete with scroll bars if needed.
Displaying Markdown Text
Another cool feature of st.write() is its ability to render Markdown text. This allows you to add formatted text, such as headers, subheaders, and paragraphs, with ease.
markdown_txt = ( "### This is a Markdown Header\\n" "#### This is a Markdown Subheader\\n" "This is a Markdown paragraph.\\n" ) st.write(markdown_txt)
With just a few lines of code, you can add rich text to your app.
Streaming Data with st.write_stream()
Streamlit also allows you to stream data to your app in real-time using the st.write_stream() function. This is particularly useful for displaying data that updates over time, such as sensor readings or live analytics.
import time st.write("## Streaming Data using st.write_stream() function") stream_btn = st.button("Click Button to Stream Data") TEXT = """ # Stream a generator, iterable, or stream-like sequence to the app. """ def stream_data(txt="Hello, World!"): for word in txt.split(" "): yield word + " " time.sleep(0.01) if stream_btn: st.write_stream(stream_data(TEXT))
In this example, when the button is clicked, the app will start streaming data word by word from the TEXT string, simulating real-time data updates.
Streamlit Text Elements
In addition to data streaming, Streamlit provides several text elements to enhance the presentation of your app.
Headers and Subheaders
You can easily add headers and subheaders using st.header() and st.subheader():
st.header("This is a Header") st.subheader("This is a Subheader")
These functions help structure your content, making your app more organized and visually appealing.
Captions
Captions are useful for adding small notes or explanations. You can add them using st.caption():
st.caption("This is a caption")
Displaying Code
If you want to display code snippets in your app, you can use st.code():
code_txt = """ import pandas as pd import streamlit as st st.title("Streamlit Tutorials") for i in range(10): st.write(i) """ st.code(code_txt)
This will display the code in a nicely formatted, syntax-highlighted block.
Displaying Mathematical Expressions
For those who need to include mathematical equations, Streamlit supports LaTeX:
st.latex(r"e = mc^2") st.latex(r"\\int_a^b x^2 dx")
These commands will render LaTeX equations directly in your app.
Adding Dividers
To separate different sections of your app, you can use st.divider():
st.write("This is some text below the divider.") st.divider() st.write("This is some other text below the divider.")
Dividers add a horizontal line between sections, helping to break up the content visually.
Conclusion
In this introductory tutorial, we covered the basics of Streamlit, including how to use st.write() to display data and text, and how to stream data using st.write_stream(). We also explored various text elements to enhance the structure and readability of your app.
Streamlit makes it incredibly easy to create interactive web applications with just a few lines of code. Whether you're building dashboards, data exploration tools, or any other data-driven app, Streamlit provides the tools you need to get started quickly.
In the next tutorial, we’ll dive deeper into widgets and interactivity features in Streamlit. Stay tuned!
Si vous avez trouvé ce tutoriel utile, n'oubliez pas de le partager et de vous abonner pour plus de contenu. Rendez-vous dans le prochain post !
Si vous souhaitez soutenir mon écriture ou m'offrir une bière : https://buymeacoffee.com/bmours
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds











Python convient à la science des données, au développement Web et aux tâches d'automatisation, tandis que C convient à la programmation système, au développement de jeux et aux systèmes intégrés. Python est connu pour sa simplicité et son écosystème puissant, tandis que C est connu pour ses capacités de contrôle élevées et sous-jacentes.

Vous pouvez apprendre les concepts de programmation de base et les compétences de Python dans les 2 heures. 1. Apprenez les variables et les types de données, 2. Flux de contrôle maître (instructions et boucles conditionnelles), 3. Comprenez la définition et l'utilisation des fonctions, 4. Démarrez rapidement avec la programmation Python via des exemples simples et des extraits de code.

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

Vous pouvez apprendre les bases de Python dans les deux heures. 1. Apprenez les variables et les types de données, 2. Structures de contrôle maître telles que si les instructions et les boucles, 3. Comprenez la définition et l'utilisation des fonctions. Ceux-ci vous aideront à commencer à écrire des programmes Python simples.

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python est largement utilisé dans les domaines du développement Web, de la science des données, de l'apprentissage automatique, de l'automatisation et des scripts. 1) Dans le développement Web, les cadres Django et Flask simplifient le processus de développement. 2) Dans les domaines de la science des données et de l'apprentissage automatique, les bibliothèques Numpy, Pandas, Scikit-Learn et Tensorflow fournissent un fort soutien. 3) En termes d'automatisation et de script, Python convient aux tâches telles que les tests automatisés et la gestion du système.

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.
