Hadoop 2.0配置

Jun 07, 2016 pm 04:29 PM
hadoop yarn à propos 配置

最近要做一次关于yarn的分享,于是想搭建一个Hadoop环境。Hadoop 2.0较之前的Hadoop 0.1x变化比较大,折腾了好久了,终于把环境搞好了。我搭建了一个两节点的集群,只配置了一些必须的参数,让集群勉强跑起来。 1、core-site.xml configurationpropertynamef

最近要做一次关于yarn的分享,于是想搭建一个Hadoop环境。Hadoop 2.0较之前的Hadoop 0.1x变化比较大,折腾了好久了,终于把环境搞好了。我搭建了一个两节点的集群,只配置了一些必须的参数,让集群勉强跑起来。

1、core-site.xml

<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://10.232.42.91:19000/</value>
</property>
</configuration>
Copier après la connexion

2、mapred-site.xml

<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
Copier après la connexion

3、yarn-site.xml

<configuration>
<property>
<name>yarn.resourcemanager.address</name>
<value>hdfs://10.232.42.91:19001/</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>hdfs://10.232.42.91:19002/</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce.shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>10.232.42.91:8030</value>
</property>
</configuration>
Copier après la connexion

把JAVA_HOME、HADOOP_HOME都设置到.bashrc里面去,然后运行sbin/start-all.sh。使用jps可以看到两个节点下运行的进程如下。

[master] jps
31318 ResourceManager
28981 DataNode
11580 JobHistoryServer
28858 NameNode
29155 SecondaryNameNode
31426 NodeManager
11016 Jps
[slave] jps
12592 NodeManager
11711 DataNode
17699 Jps
Copier après la connexion

上面这个JobHistoryServer需要单独启动,通过它可以看到每个application的详细日志。启动命令如下。

sbin/mr-jobhistory-daemon.sh start historyserver
Copier après la connexion

打开http://10.232.42.91:8088/cluster/cluster这个地址可以看到cluster的介绍信息。这里再也看不到slot相关的数据了。

Snip20130307_49

万事俱备。放点文本数据到hdfs://10.232.42.91:19000/input这个目录下,运行wordcount看看效果。

$ cd hadoop/share/hadoop/mapreduce
$ hadoop jar hadoop-mapreduce-examples-2.0.3-alpha.jar wordcount hdfs://10.232.42.91:19000/input hdfs://10.232.42.91:19000/output
13/03/07 21:08:25 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
13/03/07 21:08:26 INFO service.AbstractService: Service:org.apache.hadoop.yarn.client.YarnClientImpl is inited.
13/03/07 21:08:26 INFO service.AbstractService: Service:org.apache.hadoop.yarn.client.YarnClientImpl is started.
13/03/07 21:08:26 INFO input.FileInputFormat: Total input paths to process : 3
13/03/07 21:08:26 INFO mapreduce.JobSubmitter: number of splits:3
13/03/07 21:08:26 WARN conf.Configuration: mapred.jar is deprecated. Instead, use mapreduce.job.jar
13/03/07 21:08:26 WARN conf.Configuration: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
13/03/07 21:08:26 WARN conf.Configuration: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class
13/03/07 21:08:26 WARN conf.Configuration: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
13/03/07 21:08:26 WARN conf.Configuration: mapred.job.name is deprecated. Instead, use mapreduce.job.name
13/03/07 21:08:26 WARN conf.Configuration: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
13/03/07 21:08:26 WARN conf.Configuration: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
13/03/07 21:08:26 WARN conf.Configuration: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
13/03/07 21:08:26 WARN conf.Configuration: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
13/03/07 21:08:26 WARN conf.Configuration: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
13/03/07 21:08:26 WARN conf.Configuration: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
13/03/07 21:08:26 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1362658309553_0019
13/03/07 21:08:26 INFO client.YarnClientImpl: Submitted application application_1362658309553_0019 to ResourceManager at /10.232.42.91:19001
13/03/07 21:08:26 INFO mapreduce.Job: The url to track the job: http://search042091.sqa.cm4.tbsite.net:8088/proxy/application_1362658309553_0019/
13/03/07 21:08:26 INFO mapreduce.Job: Running job: job_1362658309553_0019
13/03/07 21:08:33 INFO mapreduce.Job: Job job_1362658309553_0019 running in uber mode : false
13/03/07 21:08:33 INFO mapreduce.Job:  map 0% reduce 0%
13/03/07 21:08:39 INFO mapreduce.Job:  map 100% reduce 0%
13/03/07 21:08:44 INFO mapreduce.Job:  map 100% reduce 100%
13/03/07 21:08:44 INFO mapreduce.Job: Job job_1362658309553_0019 completed successfully
13/03/07 21:08:44 INFO mapreduce.Job: Counters: 43
	File System Counters
		FILE: Number of bytes read=12698
		FILE: Number of bytes written=312593
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=16947
		HDFS: Number of bytes written=8739
		HDFS: Number of read operations=12
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=2
	Job Counters 
		Launched map tasks=3
		Launched reduce tasks=1
		Rack-local map tasks=3
		Total time spent by all maps in occupied slots (ms)=10750
		Total time spent by all reduces in occupied slots (ms)=4221
	Map-Reduce Framework
		Map input records=317
		Map output records=2324
		Map output bytes=24586
		Map output materialized bytes=12710
		Input split bytes=316
		Combine input records=2324
		Combine output records=885
		Reduce input groups=828
		Reduce shuffle bytes=12710
		Reduce input records=885
		Reduce output records=828
		Spilled Records=1770
		Shuffled Maps =3
		Failed Shuffles=0
		Merged Map outputs=3
		GC time elapsed (ms)=376
		CPU time spent (ms)=4480
		Physical memory (bytes) snapshot=557428736
		Virtual memory (bytes) snapshot=2105122816
		Total committed heap usage (bytes)=254607360
	Shuffle Errors
		BAD_ID=0
		CONNECTION=0
		IO_ERROR=0
		WRONG_LENGTH=0
		WRONG_MAP=0
		WRONG_REDUCE=0
	File Input Format Counters 
		Bytes Read=16631
	File Output Format Counters 
		Bytes Written=8739
Copier après la connexion

接下来玩玩yarn吧。Hadoop官方文档那篇WritingYarnApplications太让人蛋碎了,好在我领悟到distributedshell就是使用yarn编写的。要研究yarn的话,直接去Hadoop source里面找相应的代码研究即可。

$ hadoop jar hadoop-yarn-applications-distributedshell-2.0.3-alpha.jar --jar hadoop-yarn-applications-distributedshell-2.0.3-alpha.jar org.apache.hadoop.yarn.applications.distributedshell.Client --shell_command uname --shell_args '-a'
13/03/07 21:42:44 INFO service.AbstractService: Service:org.apache.hadoop.yarn.client.YarnClientImpl is inited.
13/03/07 21:42:44 INFO distributedshell.Client: Initializing Client
13/03/07 21:42:44 INFO distributedshell.Client: Running Client
13/03/07 21:42:44 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
13/03/07 21:42:44 INFO service.AbstractService: Service:org.apache.hadoop.yarn.client.YarnClientImpl is started.
13/03/07 21:42:44 INFO distributedshell.Client: Got Cluster metric info from ASM, numNodeManagers=2
13/03/07 21:42:44 INFO distributedshell.Client: Got Cluster node info from ASM
13/03/07 21:42:44 INFO distributedshell.Client: Got node report from ASM for, nodeId=search042091.sqa.cm4:39557, nodeAddresssearch042091.sqa.cm4:8042, nodeRackName/default-rack, nodeNumContainers0, nodeHealthStatusis_node_healthy: true, health_report: "", last_health_report_time: 1362663711950, 
13/03/07 21:42:44 INFO distributedshell.Client: Got node report from ASM for, nodeId=search041134.sqa.cm4:49313, nodeAddresssearch041134.sqa.cm4:8042, nodeRackName/default-rack, nodeNumContainers0, nodeHealthStatusis_node_healthy: true, health_report: "", last_health_report_time: 1362663712038, 
13/03/07 21:42:44 INFO distributedshell.Client: Queue info, queueName=default, queueCurrentCapacity=0.0, queueMaxCapacity=1.0, queueApplicationCount=17, queueChildQueueCount=0
13/03/07 21:42:44 INFO distributedshell.Client: User ACL Info for Queue, queueName=root, userAcl=SUBMIT_APPLICATIONS
13/03/07 21:42:44 INFO distributedshell.Client: User ACL Info for Queue, queueName=root, userAcl=ADMINISTER_QUEUE
13/03/07 21:42:44 INFO distributedshell.Client: User ACL Info for Queue, queueName=default, userAcl=SUBMIT_APPLICATIONS
13/03/07 21:42:44 INFO distributedshell.Client: User ACL Info for Queue, queueName=default, userAcl=ADMINISTER_QUEUE
13/03/07 21:42:44 INFO distributedshell.Client: Min mem capabililty of resources in this cluster 1024
13/03/07 21:42:44 INFO distributedshell.Client: Max mem capabililty of resources in this cluster 8192
13/03/07 21:42:44 INFO distributedshell.Client: AM memory specified below min threshold of cluster. Using min value., specified=10, min=1024
13/03/07 21:42:44 INFO distributedshell.Client: Setting up application submission context for ASM
13/03/07 21:42:44 INFO distributedshell.Client: Copy App Master jar from local filesystem and add to local environment
13/03/07 21:42:45 INFO distributedshell.Client: Set the environment for the application master
13/03/07 21:42:45 INFO distributedshell.Client: Setting up app master command
13/03/07 21:42:45 INFO distributedshell.Client: Completed setting up app master command ${JAVA_HOME}/bin/java -Xmx1024m org.apache.hadoop.yarn.applications.distributedshell.ApplicationMaster --container_memory 10 --num_containers 1 --priority 0 --shell_command uname --shell_args -a --debug 1><log_dir>/AppMaster.stdout 2><log_dir>/AppMaster.stderr 
13/03/07 21:42:45 INFO distributedshell.Client: Submitting application to ASM
13/03/07 21:42:45 INFO client.YarnClientImpl: Submitted application application_1362658309553_0020 to ResourceManager at /10.232.42.91:19001
13/03/07 21:42:46 INFO distributedshell.Client: Got application report from ASM for, appId=20, clientToken=null, appDiagnostics=, appMasterHost=N/A, appQueue=default, appMasterRpcPort=0, appStartTime=1362663765373, yarnAppState=ACCEPTED, distributedFinalState=UNDEFINED, appTrackingUrl=search042091.sqa.cm4.tbsite.net:8088/proxy/application_1362658309553_0020/, appUser=henshao
13/03/07 21:42:47 INFO distributedshell.Client: Got application report from ASM for, appId=20, clientToken=null, appDiagnostics=, appMasterHost=N/A, appQueue=default, appMasterRpcPort=0, appStartTime=1362663765373, yarnAppState=ACCEPTED, distributedFinalState=UNDEFINED, appTrackingUrl=search042091.sqa.cm4.tbsite.net:8088/proxy/application_1362658309553_0020/, appUser=henshao
13/03/07 21:42:48 INFO distributedshell.Client: Got application report from ASM for, appId=20, clientToken=null, appDiagnostics=, appMasterHost=, appQueue=default, appMasterRpcPort=0, appStartTime=1362663765373, yarnAppState=RUNNING, distributedFinalState=UNDEFINED, appTrackingUrl=search042091.sqa.cm4.tbsite.net:8088/proxy/application_1362658309553_0020/, appUser=henshao
13/03/07 21:42:49 INFO distributedshell.Client: Got application report from ASM for, appId=20, clientToken=null, appDiagnostics=, appMasterHost=, appQueue=default, appMasterRpcPort=0, appStartTime=1362663765373, yarnAppState=RUNNING, distributedFinalState=UNDEFINED, appTrackingUrl=search042091.sqa.cm4.tbsite.net:8088/proxy/application_1362658309553_0020/, appUser=henshao
13/03/07 21:42:50 INFO distributedshell.Client: Got application report from ASM for, appId=20, clientToken=null, appDiagnostics=, appMasterHost=, appQueue=default, appMasterRpcPort=0, appStartTime=1362663765373, yarnAppState=RUNNING, distributedFinalState=UNDEFINED, appTrackingUrl=search042091.sqa.cm4.tbsite.net:8088/proxy/application_1362658309553_0020/, appUser=henshao
13/03/07 21:42:51 INFO distributedshell.Client: Got application report from ASM for, appId=20, clientToken=null, appDiagnostics=, appMasterHost=, appQueue=default, appMasterRpcPort=0, appStartTime=1362663765373, yarnAppState=RUNNING, distributedFinalState=UNDEFINED, appTrackingUrl=search042091.sqa.cm4.tbsite.net:8088/proxy/application_1362658309553_0020/, appUser=henshao
13/03/07 21:42:52 INFO distributedshell.Client: Got application report from ASM for, appId=20, clientToken=null, appDiagnostics=, appMasterHost=, appQueue=default, appMasterRpcPort=0, appStartTime=1362663765373, yarnAppState=FINISHED, distributedFinalState=SUCCEEDED, appTrackingUrl=search042091.sqa.cm4.tbsite.net:8088/proxy/application_1362658309553_0020/, appUser=henshao
13/03/07 21:42:52 INFO distributedshell.Client: Application has completed successfully. Breaking monitoring loop
13/03/07 21:42:52 INFO distributedshell.Client: Application completed successfully
</log_dir></log_dir>
Copier après la connexion

运行完成之后,找不到输出在哪儿,费了好大的劲,终于在hadoop/logs/userlogs下面找到输出了。不知道为何运行了两个container。

$ tree hadoop/logs/userlogs/application_1362658309553_0018
application_1362658309553_0018
|-- container_1362658309553_0018_01_000001
|   |-- AppMaster.stderr
|   `-- AppMaster.stdout
`-- container_1362658309553_0018_01_000002
    |-- stderr
    `-- stdout
$ cat hadoop/logs/userlogs/application_1362658309553_0018/container_1362658309553_0018_01_000002/stdout
Linux search042091.sqa.cm4 2.6.18-164.el5 #1 SMP Tue Aug 18 15:51:48 EDT 2009 x86_64 x86_64 x86_64 GNU/Linux
Copier après la connexion

好,开始用yarn调度一个程序。我写了一个脚本,里面启动了服务器。

$ cat ~/start_sp.sh 
#!/bin/env bash
source /home/admin/.bashrc
/home/admin/sp/bin/sap_server -c /home/admin/sp/sp_worker/etc/sap_server_app.cfg -l /home/admin/sp/sp_worker/etc/sap_server_log.cfg -k restart
Copier après la connexion

启动起来之后,进程关系图如下。

Snip20130308_58

接着我把脚本直接kill掉,期待yarn给我重启脚本。发现application运行结束了,AppMaster.stderr日志里面有如下内容。

13/03/08 21:40:02 INFO distributedshell.ApplicationMaster: Got response from RM for container ask, completedCnt=1
13/03/08 21:40:02 INFO distributedshell.ApplicationMaster: Got container status for containerID=container_1362747551045_0017_01_000002, state=COMPLETE, exitStatus=137, diagnostics=
Killed by external signal
13/03/08 21:40:02 INFO distributedshell.ApplicationMaster: Current application state: loop=464, appDone=true, total=1, requested=1, completed=1, failed=1, currentAllocated=1
13/03/08 21:40:02 INFO distributedshell.ApplicationMaster: Application completed. Signalling finish to RM
13/03/08 21:40:02 INFO service.AbstractService: Service:org.apache.hadoop.yarn.client.AMRMClientImpl is stopped.
13/03/08 21:40:02 INFO distributedshell.ApplicationMaster: Application Master failed. exiting
Copier après la connexion
Déclaration de ce site Web
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Grow A Garden - Guide de mutation complet
3 Il y a quelques semaines By DDD
<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Système de fusion, expliqué
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semaines By 尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Sujets chauds

Tutoriel Java
1666
14
Tutoriel PHP
1273
29
Tutoriel C#
1253
24
Comment configurer la configuration de Git dans PyCharm Comment configurer la configuration de Git dans PyCharm Feb 20, 2024 am 09:47 AM

Titre : Comment configurer correctement Git dans PyCharm Dans le développement de logiciels modernes, le système de contrôle de version est un outil très important, et Git, en tant que l'un des systèmes de contrôle de version les plus populaires, offre aux développeurs des fonctions puissantes et des opérations flexibles. En tant que puissant environnement de développement intégré Python, PyCharm prend en charge Git, permettant aux développeurs de gérer plus facilement les versions de code. Cet article explique comment configurer correctement Git dans PyCharm pour faciliter un meilleur développement pendant le processus de développement.

Le principe de fonctionnement et la méthode de configuration de GDM dans le système Linux Le principe de fonctionnement et la méthode de configuration de GDM dans le système Linux Mar 01, 2024 pm 06:36 PM

Titre : Le principe de fonctionnement et la méthode de configuration de GDM dans les systèmes Linux Dans les systèmes d'exploitation Linux, GDM (GNOMEDisplayManager) est un gestionnaire d'affichage commun utilisé pour contrôler la connexion à l'interface utilisateur graphique (GUI) et la gestion des sessions utilisateur. Cet article présentera le principe de fonctionnement et la méthode de configuration de GDM, ainsi que des exemples de code spécifiques. 1. Principe de fonctionnement de GDM GDM est le gestionnaire d'affichage de l'environnement de bureau GNOME. Il est chargé de démarrer le serveur X et de fournir l'interface de connexion à l'utilisateur.

La combinaison parfaite de PyCharm et PyTorch : étapes détaillées d'installation et de configuration La combinaison parfaite de PyCharm et PyTorch : étapes détaillées d'installation et de configuration Feb 21, 2024 pm 12:00 PM

PyCharm est un puissant environnement de développement intégré (IDE) et PyTorch est un framework open source populaire dans le domaine de l'apprentissage profond. Dans le domaine de l'apprentissage automatique et de l'apprentissage profond, l'utilisation de PyCharm et PyTorch pour le développement peut améliorer considérablement l'efficacité du développement et la qualité du code. Cet article présentera en détail comment installer et configurer PyTorch dans PyCharm, et joindra des exemples de code spécifiques pour aider les lecteurs à mieux utiliser les puissantes fonctions de ces deux éléments. Étape 1 : Installer PyCharm et Python

Comprendre Linux Bashrc : fonctions, configuration et utilisation Comprendre Linux Bashrc : fonctions, configuration et utilisation Mar 20, 2024 pm 03:30 PM

Comprendre Linux Bashrc : fonction, configuration et utilisation Dans les systèmes Linux, Bashrc (BourneAgainShellruncommands) est un fichier de configuration très important, qui contient diverses commandes et paramètres qui sont automatiquement exécutés au démarrage du système. Le fichier Bashrc se trouve généralement dans le répertoire personnel de l'utilisateur et est un fichier caché. Sa fonction est de personnaliser l'environnement Bashshell pour l'utilisateur. 1. Environnement de configuration des fonctions Bashrc

Comment configurer un groupe de travail dans le système Win11 Comment configurer un groupe de travail dans le système Win11 Feb 22, 2024 pm 09:50 PM

Comment configurer un groupe de travail dans Win11 Un groupe de travail est un moyen de connecter plusieurs ordinateurs dans un réseau local, ce qui permet de partager des fichiers, des imprimantes et d'autres ressources entre les ordinateurs. Dans le système Win11, configurer un groupe de travail est très simple, suivez simplement les étapes ci-dessous. Étape 1 : Ouvrez l'application « Paramètres ». Cliquez d'abord sur le bouton « Démarrer » du système Win11, puis sélectionnez l'application « Paramètres » dans le menu contextuel. Vous pouvez également utiliser le raccourci « Win+I » pour ouvrir « Paramètres ». Étape 2 : Sélectionnez « Système » Dans l'application Paramètres, vous verrez plusieurs options. Veuillez cliquer sur l'option "Système" pour accéder à la page des paramètres système. Étape 3 : Sélectionnez « À propos » Dans la page des paramètres « Système », vous verrez plusieurs sous-options. Cliquez s'il vous plait

Tutoriel Git de configuration de PyCharm simple et facile à comprendre Tutoriel Git de configuration de PyCharm simple et facile à comprendre Feb 20, 2024 am 08:28 AM

PyCharm est un environnement de développement intégré (IDE) couramment utilisé Dans le développement quotidien, l'utilisation de Git pour gérer le code est essentielle. Cet article explique comment configurer Git dans PyCharm et utiliser Git pour la gestion du code, avec des exemples de code spécifiques. Étape 1 : Installer Git Tout d’abord, assurez-vous que Git est installé sur votre ordinateur. S'il n'est pas installé, vous pouvez accéder au [site officiel de Git](https://git-scm.com/) pour télécharger et installer la dernière version de Git.

Comment configurer et installer FTPS sur le système Linux Comment configurer et installer FTPS sur le système Linux Mar 20, 2024 pm 02:03 PM

Titre : Comment configurer et installer FTPS dans le système Linux, des exemples de code spécifiques sont requis. Dans le système Linux, FTPS est un protocole de transfert de fichiers sécurisé. Par rapport à FTP, FTPS crypte les données transmises via le protocole TLS/SSL, ce qui améliore la sécurité des données. transmission. Dans cet article, nous présenterons comment configurer et installer FTPS dans un système Linux et fournirons des exemples de code spécifiques. Étape 1 : Installer vsftpd Ouvrez le terminal et entrez la commande suivante pour installer vsftpd : sudo

Comment installer et configurer DRBD sur le système CentOS7 ? Tutoriel sur la mise en œuvre de la haute disponibilité et de la redondance des données ! Comment installer et configurer DRBD sur le système CentOS7 ? Tutoriel sur la mise en œuvre de la haute disponibilité et de la redondance des données ! Feb 22, 2024 pm 02:13 PM

DRBD (DistributedReplicatedBlockDevice) est une solution open source permettant d'obtenir la redondance des données et la haute disponibilité. Voici le tutoriel pour installer et configurer DRBD sur le système CentOS7 : Installer DRBD : Ouvrez un terminal et connectez-vous au système CentOS7 en tant qu'administrateur. Exécutez la commande suivante pour installer le package DRBD : sudoyuminstalldrbd Configurer DRBD : modifiez le fichier de configuration DRBD (généralement situé dans le répertoire /etc/drbd.d) pour configurer les paramètres des ressources DRBD. Par exemple, vous pouvez définir les adresses IP, les ports et les périphériques du nœud principal et du nœud de sauvegarde. Assurez-vous qu'il existe une connexion réseau entre le nœud principal et le nœud de sauvegarde.

See all articles