Home Backend Development Golang Golang implements keepalived

Golang implements keepalived

May 22, 2023 pm 08:38 PM

Golang implements Keepalived: a high availability solution

In modern data centers, high availability (HA) is crucial. When a critical network component fails, business continuity can be terminated and result in significant costs or losses. Keepalived is a load balancing and failover software that ensures that the system can still operate normally even if a single component fails. This article will introduce how to implement Keepalived using Golang for high availability solutions.

  1. Keepalived Introduction

Keepalived is an open source load balancing software that can ensure the high availability of business in multi-server clusters. When the primary server fails, Keepalived will transfer tasks to the backup server to ensure business continuity. Keepalived uses the VRRP protocol, which allows multiple servers to share a virtual IP address. When the primary server fails, the backup server takes over the virtual IP address and continues to handle client requests, thus ensuring business continuity. In addition to providing failover capabilities, Keepalived also provides health checking, load balancing and other functions.

  1. Golang implements Keepalived

Go is a statically typed programming language similar to C. It has the characteristics of high efficiency and high concurrency, and is very popular in network programming, web back-end development and other fields. We can write a simple yet full-featured Keepalived implementation using Golang. In this code example, we will use the net package to handle network connections.

First, we need to define several structures. In order to implement the VRRP protocol, we need to define the following structure:

type VRRPHeader struct {
    ProtoVersion   byte
    Type           byte
    VirtualRouter  byte
    Priority       byte
    CountIPAddr    uint8
    CountAuth      uint8
    AdvertInterval uint16
    Checksum       uint16
    VrrpIpAddr     net.IP
    MasterIpAddr   net.IP
    AuthType       uint8
    AuthDataField  []byte
}

type VRRPMessage struct {
    Header VRRPHeader
    Body   []byte
}
Copy after login

The VRRP protocol header defined by the above structure contains the following fields:

  • ProtoVersion: VRRP version number.
  • Type: VRRP type (value is 1 or 2).
  • VirtualRouter: Virtual router ID.
  • Priority: VRRP priority.
  • CountIPAddr: The number of IP addresses that record VRRP information.
  • CountAuth: Count of authentication data in VRRP messages.
  • AdvertInterval: Advert interval (in seconds).
  • Checksum: Checksum.
  • VrrpIpAddr: virtual IP address.
  • MasterIpAddr: Master server IP address.
  • AuthType: Authentication type used to authenticate VRRP messages
  • AuthDataField: Authentication data in VRRP messages.

The next step is the function that implements the VRRP protocol:

const (
    VRRP_VERSION = 3
    VRRP_TYPE = 1
    VRRP_GROUP_ID = 1
    VRRP_PRIORITY = 100
    ADVERT_INTERVAL = 1
)

func CreateVRRPMessage() VRRPMessage {
    var message VRRPMessage
    message.Header.ProtoVersion = VRRP_VERSION
    message.Header.Type = VRRP_TYPE
    message.Header.VirtualRouter = VRRP_GROUP_ID
    message.Header.Priority = VRRP_PRIORITY
    message.Header.CountIPAddr = 1
    message.Header.CountAuth = 0
    message.Header.AdvertInterval = ADVERT_INTERVAL
    message.Header.Checksum = 0
    message.Header.VrrpIpAddr = net.IPv4(192, 168, 1, 1)
    message.Header.MasterIpAddr = net.IPv4(10, 0, 0, 1)
    message.Header.AuthType = 0

    buf := new(bytes.Buffer)
    binary.Write(buf, binary.BigEndian, message.Header)
    message.Body = buf.Bytes()
    crc := crc32.ChecksumIEEE(message.Body)
    binary.BigEndian.PutUint16(message.Body[6:8], uint16(crc))
    return message
}

func SendVRRPMessage(iface *net.Interface, destIP net.IP, message VRRPMessage) error {
    socket, err := net.DialUDP("udp4", nil, &net.UDPAddr{IP: destIP, Port: 112})
    if err != nil {
        return err
    }
    defer socket.Close()

    addr, err := net.ResolveUDPAddr("udp", iface.Name)
    if err != nil {
        return err
    }

    err = syscall.Bind(socket.FileDescriptor(), addr)
    if err != nil {
        return err
    }

    socket.WriteToUDP(message.Body, &net.UDPAddr{IP: destIP, Port: 112})
    return nil
}
Copy after login

The above code defines a VRRP protocol message structure and a function for sending VRRP messages. You can create a VRRP message using the CreateVRRPMessage function. This initializes various fields of the VRRP protocol header. Use the SendVRRPMessage function to send a VRRP message to a specified IP address. It also requires the name of the interface in order to route packets to the correct network interface.

After completing the above code, we only need to create VRRP messages in the main update loop and send them regularly. Here is a sample program example:

func main() {
    iface, err := net.InterfaceByName("eth0")
    if err != nil {
        fmt.Println("Error getting interface: ", err)
        return
    }

    destIP := net.IPv4(224, 0, 0, 18)

    for {
        message := CreateVRRPMessage()
        err := SendVRRPMessage(iface, destIP, message)
        if err != nil {
            fmt.Println("Error sending VRRP message: ", err)
        }
        time.Sleep(time.Duration(message.Header.AdvertInterval) * time.Second)
    }
}
Copy after login

The above code will send a VRRP message to the 224.0.0.18 address every 1 second. In a real situation, you would need to run this program on multiple servers and make sure they use the same virtual IP address and VRRP priority.

  1. Summary

This article introduces how to write a simple Keepalived implementation using Golang. By using the efficient network programming capabilities provided by Golang, we created a high-availability solution capable of failover. Although this is a very simple implementation, it provides a starting point to start understanding how to build a high availability solution.

Using Keepalived can ensure that the business can still run normally even if a single component fails. Monitoring the health of your business, maintaining a failover plan, and responding quickly to failures is critical to help you mitigate the impact when a failure occurs.

The above is the detailed content of Golang implements keepalived. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What are the vulnerabilities of Debian OpenSSL What are the vulnerabilities of Debian OpenSSL Apr 02, 2025 am 07:30 AM

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Transforming from front-end to back-end development, is it more promising to learn Java or Golang? Apr 02, 2025 am 09:12 AM

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

How to specify the database associated with the model in Beego ORM? How to specify the database associated with the model in Beego ORM? Apr 02, 2025 pm 03:54 PM

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

What should I do if the custom structure labels in GoLand are not displayed? What should I do if the custom structure labels in GoLand are not displayed? Apr 02, 2025 pm 05:09 PM

What should I do if the custom structure labels in GoLand are not displayed? When using GoLand for Go language development, many developers will encounter custom structure tags...

What libraries are used for floating point number operations in Go? What libraries are used for floating point number operations in Go? Apr 02, 2025 pm 02:06 PM

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

What is the problem with Queue thread in Go's crawler Colly? What is the problem with Queue thread in Go's crawler Colly? Apr 02, 2025 pm 02:09 PM

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

How to configure MongoDB automatic expansion on Debian How to configure MongoDB automatic expansion on Debian Apr 02, 2025 am 07:36 AM

This article introduces how to configure MongoDB on Debian system to achieve automatic expansion. The main steps include setting up the MongoDB replica set and disk space monitoring. 1. MongoDB installation First, make sure that MongoDB is installed on the Debian system. Install using the following command: sudoaptupdatesudoaptinstall-ymongodb-org 2. Configuring MongoDB replica set MongoDB replica set ensures high availability and data redundancy, which is the basis for achieving automatic capacity expansion. Start MongoDB service: sudosystemctlstartmongodsudosys

How to solve the user_id type conversion problem when using Redis Stream to implement message queues in Go language? How to solve the user_id type conversion problem when using Redis Stream to implement message queues in Go language? Apr 02, 2025 pm 04:54 PM

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

See all articles