leaf golang routing implementation
With the popularity of Go language in web development, more and more developers are trying to use Go language to develop web applications. In the development of web applications, the implementation of routing is a very important part. Today, we will introduce a routing framework based on Go language – leaf.
1. What is Leaf?
Leaf is a lightweight Go language routing library that is flexible, easy to use, and efficient. Leaf can not only be used for HTTP services, but also for routing implementation of various network protocols such as WebSocket and FTP.
Leaf can support RESTful style API implementation, and provides middleware functions to support the development and use of custom middleware. In addition, Leaf also supports customized processing of HTTP request and response data, which can cope with various special business needs.
Leaf’s source code is hosted on GitHub and is open source under the MIT license, which is free to use, modify and distribute.
2. Leaf’s routing implementation
The routing implementation in Leaf is very simple. You only need to create a routing object and then add routing rules. The following is a simple example:
package main import ( "fmt" "github.com/vardius/leaf" ) func main() { r := leaf.NewRouter() r.GET("/", func(c *leaf.Context) { fmt.Fprintln(c.Writer, "Hello, Leaf!") }) r.Run(":8080") }
In the above code, we created a routing object through the NewRouter
function and added a GET request routing rule to the routing object. The requested path is specified in the rule as the root path /
. When a GET request accesses the server, the anonymous function corresponding to the routing rule will be executed. The matching method of routing rules uses a prefix matching algorithm, so we can cover different request paths by defining multiple rules.
In Leaf, routing rules support parameter passing. You can use :param
to define a parameter, as shown below:
r.GET("/user/:id", func(c *leaf.Context) { id := c.Params["id"] fmt.Fprintf(c.Writer, "User ID: %s", id) })
In this example, we define a routing rule for a GET request, using the parameter :id
. When there is a GET request to access /user/123
, Leaf will automatically match the routing rule and pass the parameter 123
to the id
variable in the anonymous function. We can get the parameter values passed to the routing rules through c.Params
.
Leaf also supports handling routing groups. A routing group is a group of routing rules with the same prefix, which can be implemented through the Group
function. The following is an example:
r.Group("/api/v1", func() { r.GET("/user/:id", func(c *leaf.Context) { id := c.Params["id"] fmt.Fprintf(c.Writer, "User ID: %s", id) }) r.POST("/user", func(c *leaf.Context) { fmt.Fprintln(c.Writer, "Create User") }) r.PUT("/user/:id", func(c *leaf.Context) { id := c.Params["id"] fmt.Fprintf(c.Writer, "Update User: %s", id) }) r.DELETE("/user/:id", func(c *leaf.Context) { id := c.Params["id"] fmt.Fprintf(c.Writer, "Delete User: %s", id) }) })
In the above example, we use the Group
function to create a routing group that contains all routes starting with /api/v1## The request path starting with #. Within the routing group, we define some routing rules for HTTP requests, including parameter passing, GET, POST, PUT and DELETE requests.
Use method, for example:
r.Use(func(c *leaf.Context) { // do something before request c.Next() // 执行下一个中间件或匿名函数 // do something after request })
c.Next(). After executing the anonymous function, it will return to the current middleware to execute subsequent code.
AppendMiddleware method, for example:
r.AppendMiddleware(A) r.AppendMiddleware(B) r.AppendMiddleware(C)
AppendMiddleware The method adds three middlewares A, B, and C in sequence. As requests come in, they will be executed sequentially.
Controller, and multiple processing methods can be defined in the controller. The controller can implement any business logic, and Leaf automatically matches the methods in the controller through routing rules and executes them. The following is a simple example:
type UserController struct { leaf.Controller } func (c *UserController) GetUser() { id := c.Params["id"] fmt.Fprintf(c.Writer, "User ID: %s", id) } func (c *UserController) CreateUser() { fmt.Fprintln(c.Writer, "Create User") } func (c *UserController) UpdateUser() { id := c.Params["id"] fmt.Fprintf(c.Writer, "Update User: %s", id) } func (c *UserController) DeleteUser() { id := c.Params["id"] fmt.Fprintf(c.Writer, "Delete User: %s", id) } func main() { r := leaf.NewRouter() userController := &UserController{} r.Group("/api/v1", func() { r.GET("/user/:id", userController.GetUser) r.POST("/user", userController.CreateUser) r.PUT("/user/:id", userController.UpdateUser) r.DELETE("/user/:id", userController.DeleteUser) }) r.Run(":8080") }
UserController controller and implement
GetUser,
CreateUser in it The four methods ,
UpdateUser and
DeleteUser are used to handle GET, POST, PUT and DELETE requests respectively. In the routing group, we map these methods to the corresponding requests and specify the prefix of the routing rule as
/api/v1.
c.SetHeader(key, value) // 设置响应头 c.GetHeader(key) // 获取请求头 c.SetCookie(cookie) // 设置 Cookie c.GetCookie(name) // 获取 Cookie c.SetStatusCode(code int) // 设置响应状态码 c.WriteJSON(v interface{}) // 响应 JSON 数据 c.WriteFile(file string) // 响应文件 c.String(code int, s string) // 响应字符串
Leaf is a very excellent Go language routing library. It is not only lightweight, efficient, and easy to use, but also provides a variety of functions such as middleware, MVC mode, and HTTP request and response processing. It can Meet our various needs for developing web applications. If you are looking for an excellent routing implementation in Go, Leaf is definitely worth a try.
The above is the detailed content of leaf golang routing implementation. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity,efficiency,andconcurrencyfeatures.1)InstallGofromtheofficialwebsiteandverifywith'goversion'.2)Createandrunyourfirstprogramwith'gorunhello.go'.3)Exploreconcurrencyusinggorout

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.
