


What are the commonly used techniques in Python programming?
1. String reversal
Use Python slicing to reverse the string:
# Reversing a string using slicing my_string = "ABCDE" reversed_string = my_string[::-1] print(reversed_string) # Output # EDCBA
2. Capitalize the first letter of each word
Use the title function Method:
my_string = "my name is chaitanya baweja" # using the title() function of string class new_string = my_string.title() print(new_string) # Output # My Name Is Chaitanya Baweja
3. Find unique elements in strings
Use the concept of sets to find unique elements in strings:
my_string = "aavvccccddddeee" # converting the string to a set temp_set = set(my_string) # stitching set into a string using join new_string = ''.join(temp_set) print(new_string) # output # cdvae
4. Repeat printing strings and lists n times
You can print a string or list multiple times using the multiplication sign (*):
n = 3 # number of repetitions my_string = "abcd" my_list = [1,2,3] print(my_string*n) # abcdabcdabcd print(my_list*n) # [1,2,3,1,2,3,1,2,3]
5. List generation
# Multiplying each element in a list by 2 original_list = [1,2,3,4] new_list = [2*x for x in original_list] print(new_list) # [2,4,6,8]
6. Variable exchange
a = 1 b = 2 a, b = b, a print(a) # 2 print(b) # 1
7. Split the string into a list of substrings
Use the .split() function:
string_1 = "My name is Chaitanya Baweja" string_2 = "sample/ string 2" # default separator ' ' print(string_1.split()) # ['My', 'name', 'is', 'Chaitanya', 'Baweja'] # defining separator as '/' print(string_2.split('/')) # ['sample', ' string 2']
8. Combine multiple strings into one string
list_of_strings = ['My', 'name', 'is', 'Chaitanya', 'Baweja'] # Using join with the comma separator print(','.join(list_of_strings)) # Output # My,name,is,Chaitanya,Baweja
9. Detect whether the string is a palindrome
my_string = "abcba" if my_string == my_string[::-1]: print("palindrome") else: print("not palindrome") # Output # palindrome
10. Count the number of elements in the list
# finding frequency of each element in a list from collections import Counter my_list = ['a','a','b','b','b','c','d','d','d','d','d'] count = Counter(my_list) # defining a counter object print(count) # Of all elements # Counter({'d': 5, 'b': 3, 'a': 2, 'c': 1}) print(count['b']) # of individual element # 3 print(count.most_common(1)) # most frequent element # [('d', 5)]
11. Determine whether two strings are Anagrams
The meaning of Anagrams If each English word (excluding uppercase and lowercase) appears the same number of times in the two words, use the Counter class to determine whether the two strings are Anagrams.
from collections import Counter str_1, str_2, str_3 = "acbde", "abced", "abcda" cnt_1, cnt_2, cnt_3 = Counter(str_1), Counter(str_2), Counter(str_3) if cnt_1 == cnt_2: print('1 and 2 anagram') if cnt_1 == cnt_3: print('1 and 3 anagram') # output # 1 and 2 anagram
12. Use the try-except-else-block module
except to get exception handling:
a, b = 1,0 try: print(a/b) # exception raised when b is 0 except ZeroDivisionError: print("division by zero") else: print("no exceptions raised") finally: print("Run this always") # output # division by zero # Run this always
13. Use the enumeration function to get the key/value pair
my_list = ['a', 'b', 'c', 'd', 'e'] for index, value in enumerate(my_list): print('{0}: {1}'.format(index, value)) # 0: a # 1: b # 2: c # 3: d # 4: e
14. Check the memory usage of the object
import sys num = 21 print(sys.getsizeof(num)) # In Python 2, 24 # In Python 3, 28
15. Merge dictionaries
dict_1 = {'apple': 9, 'banana': 6} dict_2 = {'banana': 4, 'orange': 8} combined_dict = {**dict_1, **dict_2} print(combined_dict) # Output # {'apple': 9, 'banana': 4, 'orange': 8}
16. Calculate the time it takes to execute a piece of code
Use the time class to calculate Time spent running a piece of code:
import time start_time = time.time() # Code to check follows for i in range(10**5): a, b = 1,2 c = a+ b # Code to check ends end_time = time.time() time_taken_in_micro = (end_time- start_time)*(10**6) print(time_taken_in_micro) # output # 18770.217895507812
17. List expansion
from iteration_utilities import deepflatten # if you only have one depth nested_list, use this def flatten(l): return [item for sublist in l for item in sublist] l = [[1,2,3],[3]] print(flatten(l)) # [1, 2, 3, 3] # if you don't know how deep the list is nested l = [[1,2,3],[4,[5],[6,7]],[8,[9,[10]]]] print(list(deepflatten(l, depth=3))) # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
18. List sampling
import random my_list = ['a', 'b', 'c', 'd', 'e'] num_samples = 2 samples = random.sample(my_list,num_samples) print(samples) # [ 'a', 'e'] this will have any 2 random values
19. Digitization
Convert integers to List of numbers:
num = 123456 # using map list_of_digits = list(map(int, str(num))) print(list_of_digits) # [1, 2, 3, 4, 5, 6] # using list comprehension list_of_digits = [int(x) for x in str(num)] print(list_of_digits) # [1, 2, 3, 4, 5, 6]
20. Check the uniqueness of list elements
Check whether each element in the list is unique:
def unique(l): if len(l)==len(set(l)): print("All elements are unique") else: print("List has duplicates") unique([1,2,3,4]) # All elements are unique unique([1,1,2,3]) # List has duplicates
The above is the detailed content of What are the commonly used techniques in Python programming?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.
