Synthetic Data Generation with LLMs
Retrieval-Augmented Generation (RAG): Revolutionizing Financial Data Analysis
This article explores the rising popularity of Retrieval-Augmented Generation (RAG) in financial firms, focusing on how it streamlines knowledge access and addresses key challenges in LLM-driven solutions. RAG combines a retriever (locating relevant documents) with a Large Language Model (LLM) (synthesizing responses), proving invaluable for tasks like customer support, research, and internal knowledge management.
Effective LLM evaluation is crucial. Inspired by Test-Driven Development (TDD), an evaluation-driven approach uses measurable benchmarks to validate and refine AI workflows. For RAG, this involves creating representative input-output pairs (e.g., Q&A pairs for chatbots, or source documents and expected summaries). Traditionally, this dataset creation relied heavily on subject matter experts (SMEs), leading to time-consuming, inconsistent, and costly processes. Furthermore, LLMs' limitations in handling visual elements within documents (tables, diagrams) hampered accuracy, with standard OCR tools often falling short.
Overcoming Challenges with Multimodal Capabilities
The emergence of multimodal foundation models offers a solution. These models process both text and visual content, eliminating the need for separate text extraction. They can ingest entire pages, recognizing layout structures, charts, and tables, thereby improving accuracy, scalability, and reducing manual effort.
Case Study: Wealth Management Research Report Analysis
This study uses the 2023 Cerulli report (a typical wealth management document combining text and complex visuals) to demonstrate automated Q&A pair generation. The goal was to generate questions incorporating visual elements and produce reliable answers. The process employed Anthropic's Claude Sonnet 3.5, which handles PDF-to-image conversion internally, simplifying the workflow and reducing code complexity.
The prompt instructed the model to analyze specific pages, identify page titles, create questions referencing visual or textual content, and generate two distinct answers for each question. A comparative learning approach was implemented, presenting two answers for evaluation and selecting the superior response. This mirrors human decision-making, where comparing alternatives simplifies the process. This aligns with best practices highlighted in “What We Learned from a Year of Building with LLMs,” emphasizing the stability of pairwise comparisons for LLM evaluation.
Claude Opus, with its advanced reasoning capabilities, acted as the "judge," selecting the better answer based on criteria like clarity and directness. This significantly reduces manual SME review, improving scalability and efficiency. While initial SME spot-checking is essential, this dependency diminishes over time as system confidence grows.
Optimizing the Workflow: Caching, Batching, and Page Selection
Several optimizations were implemented:
- Caching: Caching significantly reduced costs. Processing the report without caching cost $9; with caching, it cost $3 (a 3x savings). The cost savings are even more dramatic at scale.
- Batch Processing: Using Anthropic's Batches API halved output costs, proving far more cost-effective than individual processing.
- Page Selection: Processing the document in 10-page batches yielded the best balance between precision and efficiency. Using clear page titles as anchors proved more reliable than relying solely on page numbers for linking Q&A pairs to their source.
Example Output and Benefits
An example shows how the LLM accurately synthesized information from tables within the report to answer a question about AUM distribution. The overall benefits include:
- Significant cost reduction through caching and batch processing.
- Reduced time and effort for SMEs, allowing them to focus on higher-value tasks.
This approach demonstrates a scalable and cost-effective solution for creating evaluation datasets for RAG systems, leveraging the power of multimodal LLMs to improve accuracy and efficiency in financial data analysis. The images from the original text are included below:
The above is the detailed content of Synthetic Data Generation with LLMs. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics





The article reviews top AI art generators, discussing their features, suitability for creative projects, and value. It highlights Midjourney as the best value for professionals and recommends DALL-E 2 for high-quality, customizable art.

ChatGPT 4 is currently available and widely used, demonstrating significant improvements in understanding context and generating coherent responses compared to its predecessors like ChatGPT 3.5. Future developments may include more personalized interactions and real-time data processing capabilities, further enhancing its potential for various applications.

Meta's Llama 3.2: A Leap Forward in Multimodal and Mobile AI Meta recently unveiled Llama 3.2, a significant advancement in AI featuring powerful vision capabilities and lightweight text models optimized for mobile devices. Building on the success o

The article compares top AI chatbots like ChatGPT, Gemini, and Claude, focusing on their unique features, customization options, and performance in natural language processing and reliability.

The article discusses top AI writing assistants like Grammarly, Jasper, Copy.ai, Writesonic, and Rytr, focusing on their unique features for content creation. It argues that Jasper excels in SEO optimization, while AI tools help maintain tone consist

Falcon 3: A Revolutionary Open-Source Large Language Model Falcon 3, the latest iteration in the acclaimed Falcon series of LLMs, represents a significant advancement in AI technology. Developed by the Technology Innovation Institute (TII), this open

The article reviews top AI voice generators like Google Cloud, Amazon Polly, Microsoft Azure, IBM Watson, and Descript, focusing on their features, voice quality, and suitability for different needs.

2024 witnessed a shift from simply using LLMs for content generation to understanding their inner workings. This exploration led to the discovery of AI Agents – autonomous systems handling tasks and decisions with minimal human intervention. Buildin
