


Choosing the smartest AI in the Olympiad: Claude-3.5-Sonnet vs. GPT-4o?

AIxiv專欄是本站發布學術、技術內容的欄位。過去數年,本站AIxiv專欄接收通報了2,000多篇內容,涵蓋全球各大專院校與企業的頂尖實驗室,有效促進了學術交流與傳播。如果您有優秀的工作想要分享,歡迎投稿或聯絡報道。投稿信箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
奧林匹克學科競賽不僅是對人類(碳基智能)思維敏捷性、知識掌握和邏輯推理的極限挑戰,更是AI(「矽基智能」)鍛鍊的絕佳練兵場,是佳練兵場,是衡量AI與「超級智慧」距離的重要標尺。 OlympicArena-一個真正意義上的AI奧運競技場。在這裡,AI不僅要展現其在傳統學科知識上的深度(數學、物理、生物、化學、地理等頂級競賽),還要在模型間的認知推理能力上展開較量。
- Gemini-1.5-Pro和GPT-4V排名緊隨GPT-4o和Claude-3.5-Sonnet之後,但它們之間存在明顯的表現差距。
- 來自開源社群的AI模型表現明顯落後於這些專有模型。
- 這些模型在此基準測試上的表現不盡人意,顯示我們在實現超級智慧之路上還有很長的路要走。
Project homepage: https://gair-nlp.github.io/OlympicArena/ - Fine-grained analysis for disciplines
- GPT-4o vs. Claude-3.5-Sonnet:
- Caption: The performance of each model in terms of logical reasoning capabilities. Logical reasoning abilities include: deductive reasoning (DED), inductive reasoning (IND), abductive reasoning (ABD), analogical reasoning (ANA), causal reasoning (CAE), critical thinking (CT), decomposition reasoning (DEC) and quantitative Reasoning (QUA).
Mathematics and computer programming emphasize complex deductive reasoning skills and rule-based derivation of universal conclusions, and tend to rely less on pre-existing Knowledge. In contrast, disciplines like chemistry and biology often require large knowledge bases to reason based on known information about causal relationships and phenomena. This suggests that while mathematical and programming abilities are still valid indicators of a model's reasoning ability, other disciplines better test a model's ability to reason and problem analyze based on its internal knowledge. The characteristics of different disciplines indicate the importance of customized training data sets. For example, to improve model performance in knowledge-intensive subjects such as chemistry and biology, the model needs extensive exposure to domain-specific data during training. In contrast, for subjects that require strong logic and deductive reasoning, such as mathematics and computer science, models can benefit from training focused on purely logical reasoning. Furthermore, the distinction between reasoning ability and knowledge application demonstrates the potential of the model for cross-disciplinary application. For example, models with strong deductive reasoning capabilities can assist fields that require systematic thinking to solve problems, such as scientific research. And knowledge-rich models are valuable in disciplines that rely heavily on existing information, such as medicine and environmental science. Understanding these nuances helps develop more specialized and versatile models. Although these models contain a large amount of Chinese training data and have cross-language generalization capabilities, their training data is mainly English-based. Chinese questions are more challenging than English questions, especially in subjects like physics and chemistry, Chinese Olympiad questions are harder. These models are insufficient in identifying characters in multi-modal images, and this problem is even more serious in the Chinese environment.
It’s worth noting that at the time of writing, the earliest of these three models was released only a month ago, reflecting the rapid development in this field.
Caption: The performance of each model in different language problems.
The above is the detailed content of Choosing the smartest AI in the Olympiad: Claude-3.5-Sonnet vs. GPT-4o?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











It is also a Tusheng video, but PaintsUndo has taken a different route. ControlNet author LvminZhang started to live again! This time I aim at the field of painting. The new project PaintsUndo has received 1.4kstar (still rising crazily) not long after it was launched. Project address: https://github.com/lllyasviel/Paints-UNDO Through this project, the user inputs a static image, and PaintsUndo can automatically help you generate a video of the entire painting process, from line draft to finished product. follow. During the drawing process, the line changes are amazing. The final video result is very similar to the original image: Let’s take a look at a complete drawing.

The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com The authors of this paper are all from the team of teacher Zhang Lingming at the University of Illinois at Urbana-Champaign (UIUC), including: Steven Code repair; Deng Yinlin, fourth-year doctoral student, researcher

The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com In the development process of artificial intelligence, the control and guidance of large language models (LLM) has always been one of the core challenges, aiming to ensure that these models are both powerful and safe serve human society. Early efforts focused on reinforcement learning methods through human feedback (RL

cheers! What is it like when a paper discussion is down to words? Recently, students at Stanford University created alphaXiv, an open discussion forum for arXiv papers that allows questions and comments to be posted directly on any arXiv paper. Website link: https://alphaxiv.org/ In fact, there is no need to visit this website specifically. Just change arXiv in any URL to alphaXiv to directly open the corresponding paper on the alphaXiv forum: you can accurately locate the paragraphs in the paper, Sentence: In the discussion area on the right, users can post questions to ask the author about the ideas and details of the paper. For example, they can also comment on the content of the paper, such as: "Given to

If the answer given by the AI model is incomprehensible at all, would you dare to use it? As machine learning systems are used in more important areas, it becomes increasingly important to demonstrate why we can trust their output, and when not to trust them. One possible way to gain trust in the output of a complex system is to require the system to produce an interpretation of its output that is readable to a human or another trusted system, that is, fully understandable to the point that any possible errors can be found. For example, to build trust in the judicial system, we require courts to provide clear and readable written opinions that explain and support their decisions. For large language models, we can also adopt a similar approach. However, when taking this approach, ensure that the language model generates

Recently, the Riemann Hypothesis, known as one of the seven major problems of the millennium, has achieved a new breakthrough. The Riemann Hypothesis is a very important unsolved problem in mathematics, related to the precise properties of the distribution of prime numbers (primes are those numbers that are only divisible by 1 and themselves, and they play a fundamental role in number theory). In today's mathematical literature, there are more than a thousand mathematical propositions based on the establishment of the Riemann Hypothesis (or its generalized form). In other words, once the Riemann Hypothesis and its generalized form are proven, these more than a thousand propositions will be established as theorems, which will have a profound impact on the field of mathematics; and if the Riemann Hypothesis is proven wrong, then among these propositions part of it will also lose its effectiveness. New breakthrough comes from MIT mathematics professor Larry Guth and Oxford University

Can language models really be used for time series prediction? According to Betteridge's Law of Headlines (any news headline ending with a question mark can be answered with "no"), the answer should be no. The fact seems to be true: such a powerful LLM cannot handle time series data well. Time series, that is, time series, as the name suggests, refers to a set of data point sequences arranged in the order of time. Time series analysis is critical in many areas, including disease spread prediction, retail analytics, healthcare, and finance. In the field of time series analysis, many researchers have recently been studying how to use large language models (LLM) to classify, predict, and detect anomalies in time series. These papers assume that language models that are good at handling sequential dependencies in text can also generalize to time series.

The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com. Introduction In recent years, the application of multimodal large language models (MLLM) in various fields has achieved remarkable success. However, as the basic model for many downstream tasks, current MLLM consists of the well-known Transformer network, which
