Oracle hints 学习笔记整理
收藏一下Oracle hints应用。呵呵 在SQL语句优化过程中,我们经常会用到hint,现总结一下在SQL优化过程中常见Oracle HINT的用法:
收藏一下Oracle hints应用。呵呵
在SQL语句优化过程中,我们经常会用到hint,现总结一下在SQL优化过程中常见Oracle HINT的用法:
1. /*+ALL_ROWS*/
表明对语句块选择基于开销的优化方法,并获得最佳吞吐量,使资源消耗最小化.
例如:
SELECT /*+ALL+_ROWS*/ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO='SCOTT';
2. /*+FIRST_ROWS*/
表明对语句块选择基于开销的优化方法,并获得最佳响应时间,使资源消耗最小化.
例如:
SELECT /*+FIRST_ROWS*/ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO='SCOTT';
3. /*+CHOOSE*/
表明如果数据字典中有访问表的统计信息,将基于开销的优化方法,并获得最佳的吞吐量;
表明如果数据字典中没有访问表的统计信息,将基于规则开销的优化方法;
例如:
SELECT /*+CHOOSE*/ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO='SCOTT';
4. /*+RULE*/
表明对语句块选择基于规则的优化方法.
例如:
SELECT /*+ RULE */ EMP_NO,EMP_NAM,DAT_IN FROM BSEMPMS WHERE EMP_NO='SCOTT';
5. /*+FULL(TABLE)*/
表明对表选择全局扫描的方法.
例如:
SELECT /*+FULL(A)*/ EMP_NO,EMP_NAM FROM BSEMPMS A WHERE EMP_NO='SCOTT';
6. /*+ROWID(TABLE)*/
提示明确表明对指定表根据ROWID进行访问.
例如:
SELECT /*+ROWID(BSEMPMS)*/ * FROM BSEMPMS WHERE ROWID>='AAAAAAAAAAAAAA'
AND EMP_NO='SCOTT';
7. /*+CLUSTER(TABLE)*/
提示明确表明对指定表选择簇扫描的访问方法,它只对簇对象有效.
例如:
SELECT /*+CLUSTER */ BSEMPMS.EMP_NO,DPT_NO FROM BSEMPMS,BSDPTMS
WHERE DPT_NO='TEC304' AND BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;
8. /*+INDEX(TABLE INDEX_NAME)*/
表明对表选择索引的扫描方法.
例如:
SELECT /*+INDEX(BSEMPMS SEX_INDEX) USE SEX_INDEX BECAUSE THERE ARE FEWMALE BSEMPMS */ FROM BSEMPMS WHERE SEX='M';
9. /*+INDEX_ASC(TABLE INDEX_NAME)*/
表明对表选择索引升序的扫描方法.
例如:
SELECT /*+INDEX_ASC(BSEMPMS PK_BSEMPMS) */ FROM BSEMPMS WHERE DPT_NO='SCOTT';
10. /*+INDEX_COMBINE*/
为指定表选择位图访问路经,如果INDEX_COMBINE中没有提供作为参数的索引,将选择出位图索引的布尔组合方式.
例如:
SELECT /*+INDEX_COMBINE(BSEMPMS SAL_BMI HIREDATE_BMI)*/ * FROM BSEMPMS
WHERE SAL 11. /*+INDEX_JOIN(TABLE INDEX_NAME)*/
提示明确命令优化器使用索引作为访问路径.
例如:
SELECT /*+INDEX_JOIN(BSEMPMS SAL_HMI HIREDATE_BMI)*/ SAL,HIREDATE
FROM BSEMPMS WHERE SAL 12. /*+INDEX_DESC(TABLE INDEX_NAME)*/
表明对表选择索引降序的扫描方法.
例如:
SELECT /*+INDEX_DESC(BSEMPMS PK_BSEMPMS) */ FROM BSEMPMS WHERE DPT_NO='SCOTT';
13. /*+INDEX_FFS(TABLE INDEX_NAME)*/
对指定的表执行快速全索引扫描,而不是全表扫描的办法.
例如:
SELECT /*+INDEX_FFS(BSEMPMS IN_EMPNAM)*/ * FROM BSEMPMS WHERE DPT_NO='TEC305';
14. /*+ADD_EQUAL TABLE INDEX_NAM1,INDEX_NAM2,...*/
提示明确进行执行规划的选择,将几个单列索引的扫描合起来.
例如:
SELECT /*+INDEX_FFS(BSEMPMS IN_DPTNO,IN_EMPNO,IN_SEX)*/ * FROM BSEMPMS WHERE EMP_NO='SCOTT' AND DPT_NO='TDC306';
15. /*+USE_CONCAT*/
对查询中的WHERE后面的OR条件进行转换为UNION ALL的组合查询.
例如:
SELECT /*+USE_CONCAT*/ * FROM BSEMPMS WHERE DPT_NO='TDC506' AND SEX='M';
16. /*+NO_EXPAND*/
对于WHERE后面的OR 或者IN-LIST的查询语句,NO_EXPAND将阻止其基于优化器对其进行扩展.
例如:
SELECT /*+NO_EXPAND*/ * FROM BSEMPMS WHERE DPT_NO='TDC506' AND SEX='M';
17. /*+NOWRITE*/
禁止对查询块的查询重写操作.
18. /*+REWRITE*/
可以将视图作为参数.
19. /*+MERGE(TABLE)*/
能够对视图的各个查询进行相应的合并.
例如:
SELECT /*+MERGE(V) */ A.EMP_NO,A.EMP_NAM,B.DPT_NO FROM BSEMPMS A (SELET DPT_NO
,AVG(SAL) AS AVG_SAL FROM BSEMPMS B GROUP BY DPT_NO) V WHERE A.DPT_NO=V.DPT_NO
AND A.SAL>V.AVG_SAL;
20. /*+NO_MERGE(TABLE)*/
对于有可合并的视图不再合并.
例如:
SELECT /*+NO_MERGE(V) */ A.EMP_NO,A.EMP_NAM,B.DPT_NO FROM BSEMPMS A (SELECT DPT_NO,AVG(SAL) AS AVG_SAL FROM BSEMPMS B GROUP BY DPT_NO) V WHERE A.DPT_NO=V.DPT_NO AND A.SAL>V.AVG_SAL;
21. /*+ORDERED*/
根据表出现在FROM中的顺序,ORDERED使ORACLE依此顺序对其连接.
例如:
SELECT /*+ORDERED*/ A.COL1,B.COL2,C.COL3 FROM TABLE1 A,TABLE2 B,TABLE3 C WHERE A.COL1=B.COL1 AND B.COL1=C.COL1;
22. /*+USE_NL(TABLE)*/
将指定表与嵌套的连接的行源进行连接,并把指定表作为内部表.
例如:
SELECT /*+ORDERED USE_NL(BSEMPMS)*/ BSDPTMS.DPT_NO,BSEMPMS.EMP_NO,BSEMPMS.EMP_NAM FROM BSEMPMS,BSDPTMS WHERE BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;
23. /*+USE_MERGE(TABLE)*/
将指定的表与其他行源通过合并排序连接方式连接起来.
例如:
SELECT /*+USE_MERGE(BSEMPMS,BSDPTMS)*/ * FROM BSEMPMS,BSDPTMS WHERE BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;
24. /*+USE_HASH(TABLE)*/
将指定的表与其他行源通过哈希连接方式连接起来.
例如:
SELECT /*+USE_HASH(BSEMPMS,BSDPTMS)*/ * FROM BSEMPMS,BSDPTMS WHERE BSEMPMS.DPT_NO=BSDPTMS.DPT_NO;
25. /*+DRIVING_SITE(TABLE)*/
强制与ORACLE所选择的位置不同的表进行查询执行.
例如:
SELECT /*+DRIVING_SITE(DEPT)*/ * FROM BSEMPMS,DEPT@BSDPTMS WHERE BSEMPMS.DPT_NO=DEPT.DPT_NO;
26. /*+LEADING(TABLE)*/
将指定的表作为连接次序中的首表.
27. /*+CACHE(TABLE)*/
当进行全表扫描时,CACHE提示能够将表的检索块放置在缓冲区缓存中最近最少列表LRU的最近使用端
例如:
SELECT /*+FULL(BSEMPMS) CAHE(BSEMPMS) */ EMP_NAM FROM BSEMPMS;
28. /*+NOCACHE(TABLE)*/
当进行全表扫描时,CACHE提示能够将表的检索块放置在缓冲区缓存中最近最少列表LRU的最近使用端
例如:
SELECT /*+FULL(BSEMPMS) NOCAHE(BSEMPMS) */ EMP_NAM FROM BSEMPMS;
29. /*+APPEND*/
直接插入到表的最后,可以提高速度.
insert /*+append*/ into test1 select * from test4 ;
30. /*+NOAPPEND*/
通过在插入语句生存期内停止并行模式来启动常规插入.
insert /*+noappend*/ into test1 select * from test4 ;

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA

MySQL is suitable for web applications and content management systems and is popular for its open source, high performance and ease of use. 1) Compared with PostgreSQL, MySQL performs better in simple queries and high concurrent read operations. 2) Compared with Oracle, MySQL is more popular among small and medium-sized enterprises because of its open source and low cost. 3) Compared with Microsoft SQL Server, MySQL is more suitable for cross-platform applications. 4) Unlike MongoDB, MySQL is more suitable for structured data and transaction processing.

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.
