MySQL Cluster验证管理节点配置中内存是否超标的脚本
验证管理节点config.ini参数配置的shell脚本,看memory是否超标,运行的时候需要附带上面data node id,而且cluster要处于工作状
验证管理节点config.ini参数配置的shell脚本,看memory是否超标,运行的时候需要附带上面data node id,而且cluster要处于工作状态,最起码manage node和data node要处于启动状态
run check_memery.sh
脚本内容下:
# 注明,,是从网友飞鸿大哥那里趴过来,改改运行通过的,肯定有很多需要完善的地方,欢迎大家提出宝贵的意见。
#!/bin/bash
usage()
{
echo "-----------------------------"
echo "Usage:$(basename $0) NodeId" #数据节点的ID
echo "-----------------------------"
echo
exit 1
}
print_size ()
{
string1=$(echo $1|sed -e :a -e 's/^.\{1,40\}$/&./;ta')
echo -e "$string1 (MB):\t$2"
}
if [ "$1" == "" ]; then
usage
fi
string1=$(echo $1|egrep "^[0-9]+$")
if [ "$1" != "$string1" ]; then
usage
fi
# GETVAL="ndb_config --id=$1 -q"
GETVAL="/root/mysql-cluster-gpl-7.2.7-linux2.6-x86_64/bin/ndb_config --id=$1 -q"
#ndb_config --id=12 -q MaxNoOfAttributes
ksize=1024
msize=$(echo "scale=2; 1024*1024" | bc -l 2>/dev/null)
gsize=$(echo "scale=2; 1024*1024*1024" | bc -l 2>/dev/null)
echo "KB:$ksize MB:$msize GB:$gsize"
MEMSIZE=0
#Attributes
TSIZE=$($GETVAL MaxNoOfAttributes)
TSIZE=$(echo "scale=0; $TSIZE*200" | bc -l 2>/dev/null)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "MaxNoOfAttributes" $TSIZE
#Attributes
TSIZE=$($GETVAL MaxNoOfTables)
TSIZE=$(echo "scale=0; $TSIZE*20*$ksize" | bc -l 2>/dev/null)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "MaxNoOfTables" $TSIZE
#Attributes
TSIZE=$($GETVAL MaxNoOfOrderedIndexes)
TSIZE=$(echo "scale=0; $TSIZE*10*$ksize" | bc -l 2>/dev/null)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "MaxNoOfOrderedIndexes" $TSIZE
#Attributes
TSIZE=$($GETVAL MaxNoOfUniqueHashIndexes)
TSIZE=$(echo "scale=0; $TSIZE*10*$ksize" | bc -l 2>/dev/null)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "MaxNoOfUniqueHashIndexes" $TSIZE
#Attributes
TSIZE=$($GETVAL MaxNoOfConcurrentOperations)
TSIZE=$(echo "scale=0; $TSIZE*1*$ksize" | bc -l 2>/dev/null)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "MaxNoOfConcurrentOperations" $TSIZE
#Attributes
TSIZE=$($GETVAL TransactionBufferMemory)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "TransactionBufferMemory" $TSIZE
#Attributes
TSIZE=$($GETVAL IndexMemory)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "IndexMemory" $TSIZE
#Attributes
TSIZE=$($GETVAL DataMemory)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "DataMemory" $TSIZE
#Attributes
TSIZE=$($GETVAL UndoIndexBuffer)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "UndoIndexBuffer" $TSIZE
#Attributes
TSIZE=$($GETVAL UndoDataBuffer)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "UndoDataBuffer" $TSIZE
#Attributes
TSIZE=$($GETVAL RedoBuffer)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "RedoBuffer" $TSIZE
#Attributes
TSIZE=$($GETVAL LongMessageBuffer)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "LongMessageBuffer" $TSIZE
#Attributes
TSIZE=$($GETVAL DiskPageBufferMemory)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "DiskPageBufferMemory" $TSIZE
#Attributes
TSIZE=$($GETVAL SharedGlobalMemory)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "SharedGlobalMemory" $TSIZE
#Attributes
TSIZE=$($GETVAL BackupMemory)
MEMSIZE=$(echo "scale=2; $MEMSIZE+$TSIZE" | bc -l 2>/dev/null)
TSIZE=$(echo "scale=0; $TSIZE/$msize" | bc -l 2>/dev/null)
print_size "BackupMemory" $TSIZE
MEMSIZE=$(echo "scale=2; $MEMSIZE/$gsize" | bc -l 2>/dev/null)
echo
echo "******Total Memory size: ${MEMSIZE}GB******"
MySQL Cluster 的详细介绍:请点这里
MySQL Cluster 的下载地址:请点这里
推荐阅读:
MySQL Cluster 备份与恢复
MySQL Cluster 3台机器搭建集群环境 DOC
MySQL Cluster7.2在线增加数据节点存在重大弊端

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA

MySQL is suitable for web applications and content management systems and is popular for its open source, high performance and ease of use. 1) Compared with PostgreSQL, MySQL performs better in simple queries and high concurrent read operations. 2) Compared with Oracle, MySQL is more popular among small and medium-sized enterprises because of its open source and low cost. 3) Compared with Microsoft SQL Server, MySQL is more suitable for cross-platform applications. 4) Unlike MongoDB, MySQL is more suitable for structured data and transaction processing.

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.
