Oracle 10g 手工创建ASM数据库
Oracle 10g 手工创建数据库今天尝试除DBCA以外的另一种方法来创建数据库,先前做过oracle10g手工建库的实验;数据版本是10g 10.2
Oracle10g 手工创建以ASM存储的数据库
项目流程:
0,给电脑增加2块SCSI硬盘
1,安装ASM
2,创建两个ASM磁盘组,分别为:GROUP1、GROUP2
3, 开始创建数据库,首先建立参数文件,,保存为 $ORACLE_HOME/dbs/initnestling.ora
4,建立密码文件$ORACLE_HOME/dbs/orapwdnestling
5,建立跟踪、日志文件的路径
6,启动数据库到nomount状态
7,创建并运行建库的脚本
8,创建erp表空间
9,创建数据字典视图
10,建立spfile
11,创建数据库用户
12,配置网络服务
13,扩展应用
a, 查看ASM groups 组号、组名、总大小、空闲空间
b, 删除group2
c, 把ORCL:DISK2添加到GROUP1中去
d, 查看负载信息
e, 重新负载均衡
步骤:
Oracle 10g 手工创建数据库
今天尝试除DBCA以外的另一种方法来创建数据库,先前做过oracle10g手工建库的实验;数据版本是10g 10.2.0.1.0 搭配了ASM。
0,给电脑增加2块SCSI硬盘
1,安装ASM
[root@kk ~]# uname -rm
2.6.18-92.el5 i686
[root@kk ~]# cd 32bit/
[root@kk 32bit]# rpm -ivh oracleasm-support-2.1.3-1.el5.i386.rpm
warning: oracleasm-support-2.1.3-1.el5.i386.rpm: Header V3 DSA signature: NOKEY, key ID 1e5e0159
Preparing... ########################################### [100%]
1:oracleasm-support ########################################### [100%]
[root@kk 32bit]# rpm -ivh oracleasm-2.6.18-92.el5
[root@kk 32bit]# rpm -ivh oracleasm-2.6.18-92.el5-2.0.5-1.el5.i686.rpm
warning: oracleasm-2.6.18-92.el5-2.0.5-1.el5.i686.rpm: Header V3 DSA signature: NOKEY, key ID 1e5e0159
Preparing... ########################################### [100%]
1:oracleasm-2.6.18-92.el5########################################### [100%]
[root@kk 32bit]# rpm -ivh oracleasmlib-2.0.4-1.el5.i386.rpm
warning: oracleasmlib-2.0.4-1.el5.i386.rpm: Header V3 DSA signature: NOKEY, key ID 1e5e0159
Preparing... ########################################### [100%]
1:oracleasmlib ########################################### [100%]
[root@kk 32bit]# vi /etc/selinux/config
# This file controls the state of SELinux on the system.
# SELINUX= can take one of these three values:
# enforcing - SELinux security policy is enforced.
# permissive - SELinux prints warnings instead of enforcing.
# disabled - SELinux is fully disabled.
SELINUX=disabled
# SELINUXTYPE= type of policy in use. Possible values are:
# targeted - Only targeted network daemons are protected.
# strict - Full SELinux protection.
SELINUXTYPE=targeted
~
[root@kk 32bit]# setenforce 0
[root@kk 32bit]# /etc/init.d/oracleasm configure
Configuring the Oracle ASM library driver.
This will configure the on-boot properties of the Oracle ASM library
driver. The following questions will determine whether the driver is
loaded on boot and what permissions it will have. The current values
will be shown in brackets ('[]'). Hitting
answer will keep that current value. Ctrl-C will abort.
Default user to own the driver interface []: oracle
Default group to own the driver interface []: dba
Start Oracle ASM library driver on boot (y/n) [n]: y
Scan for Oracle ASM disks on boot (y/n) [y]: y
Writing Oracle ASM library driver configuration: done
Initializing the Oracle ASMLib driver: [ OK ]
Scanning the system for Oracle ASMLib disks: [ OK ]
[root@kk 32bit]# /etc/init.d/oracleasm enable
Writing Oracle ASM library driver configuration: done
Initializing the Oracle ASMLib driver: [ OK ]
Scanning the system for Oracle ASMLib disks: [ OK ]
[root@kk 32bit]# cd /opt/oracle/product/10.2.0/db_1/bin/
[root@kk bin]# ./localconfig add
/etc/oracle does not exist. Creating it now.
Successfully accumulated necessary OCR keys.
Creating OCR keys for user 'root', privgrp 'root'..
Operation successful.
Configuration for local CSS has been initialized
Adding to inittab
Startup will be queued to init within 90 seconds.
Checking the status of new Oracle init process...
Expecting the CRS daemons to be up within 600 seconds.
CSS is active on these nodes.
kk
CSS is active on all nodes.
Oracle CSS service is installed and running under init(1M)
2,创建两个ASM磁盘组,分别为:GROUP1、GROUP2
[root@kk bin]# fdisk -l
Disk /dev/sda: 42.9 GB, 42949672960 bytes
255 heads, 63 sectors/track, 5221 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Device Boot Start End Blocks Id System
/dev/sda1 * 1 25 200781 83 Linux
/dev/sda2 26 286 2096482+ 82 Linux swap / Solaris
/dev/sda3 287 5221 39640387+ 83 Linux
Disk /dev/sdb: 8589 MB, 8589934592 bytes
255 heads, 63 sectors/track, 1044 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Device Boot Start End Blocks Id System
/dev/sdb1 1 1044 8385898+ 83 Linux
Disk /dev/sdc: 8589 MB, 8589934592 bytes
255 heads, 63 sectors/track, 1044 cylinders
Units = cylinders of 16065 * 512 = 8225280 bytes
Device Boot Start End Blocks Id System
/dev/sdc1 1 1044 8385898+ 83 Linux
[root@kk bin]# /etc/init.d/oracleasm createdisk DISK1 /dev/sdb1
Marking disk "DISK1" as an ASM disk: [ OK ]
[root@kk bin]# /etc/init.d/oracleasm createdisk DISK2 /dev/sdc1
Marking disk "DISK2" as an ASM disk: [ OK ]
[root@kk bin]# /etc/init.d/oracleasm listdisk
Usage: /etc/init.d/oracleasm {start|stop|restart|enable|disable|configure|createdisk|deletedisk|querydisk|listdisks|scandisks|status}
[root@kk bin]# /etc/init.d/oracleasm listdisks
DISK1
DISK2

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA

MySQL is suitable for web applications and content management systems and is popular for its open source, high performance and ease of use. 1) Compared with PostgreSQL, MySQL performs better in simple queries and high concurrent read operations. 2) Compared with Oracle, MySQL is more popular among small and medium-sized enterprises because of its open source and low cost. 3) Compared with Microsoft SQL Server, MySQL is more suitable for cross-platform applications. 4) Unlike MongoDB, MySQL is more suitable for structured data and transaction processing.

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.
