MySQL Innodb数据库性能实践热点数据性能
对于大部分的应用来说,都存在热点数据的访问,即:某些数据在一定时间内的访问频率要远远高于其它数据。常见的热点数据有ldquo
对于大部分的应用来说,都存在热点数据的访问,即:某些数据在一定时间内的访问频率要远远高于其它数据。
常见的热点数据有“最新的新闻”、“最热门的新闻”、“下载量最大”的电影等。
为了了解MySQL Innodb对热点数据的支持情况,我进行了基准测试,测试环境如下:
【硬件配置】
硬件
配置
CPU
Intel(R) Xeon(R) CPU E5620 主频2.40GHz, 物理CPU 2个,逻辑CPU 16个
内存
24G(6块 * 4G DDR3 1333 REG)
硬盘
300G * 3个,SAS硬盘 15000转,无RAID,有RAID卡,且开了回写功能
OS
RHEL5
MySQL
5.1.49/5.1.54
【MySQL配置】
配置项
配置
innodb_buffer_pool_size
4G
innodb_log_file_size
200M
innodb_log_files_in_group
3
sync_binlog
100
innodb_flush_log_at_trx_commit
2
【热点数据模型】
为了模拟热点数据主要存储在内存中的情况,使用范围查询将前20%数据作为热点数据加载到内存,例如:SELECT COUNT(*) FROM BT_KV_SHORT_INT_CHAR_10KW WHERE col1
项目
模型
表记录数
1KW(3G),2KW(6G),5KW(15G),10KW(30G)
Key
INT
Value
CHAR(250)
热点数据
占总数据20%
性能测试结果如下:
【查询】详细分析如下:
==>当热点数据小于Innodb buffer pool时(1KW/2KW/5KW),查询操作的性能很高,和表数据小于Innodb buffer pool时的性能相近;
==> 当热点数据大于Innodb buffer pool时(10KW),查询的性能下降明显;
==> 热点数据访问的总体性能优于随机访问;
【插入】详细分析如下:
==>当热点数据小于Innodb buffer pool时(1KW/2KW/5KW),性能随着热点数据的增长而逐渐下降,原因是当Innodb buffer pool接近饱和时,buffer管理需要进行更多的操作;
==>当热点数据超过Innodb buffer pool后(10KW),性能急剧下降,原因是磁盘IO已经成为性能瓶颈;
分析同INSERT。
【删除】分析如下:
==>和INSERT/UPDATE表现略微不同,,当热点数据小于Innodb buffer pool时,性能变化不大,因为DELETE操作不需要生成新的Page,节省了buffer管理的操作;
==> 当热点数据大于Innodb buffer pool时,性能下降较大,原因是此时磁盘IO已经成为性能瓶颈。
的方式管理和淘汰数据,根据LRU算法,热点数据都会优先放入内存,因此热点数据的测试性能比随机访问的要高出不少。但热点数据超出Innodb buffer pool后,磁盘IO成为性能主要瓶颈,性能会急剧下降。
【应用建议】
实际应用中涉及热点数据访问时,Innodb是一个高性能的较好的选择,但前提是要能够预估热点数据的大小,只有当热点数据小于Innodb buffer pool(即热点数据全部能够放入内存)时,才能够获得高性能。
注:
测试数据只为对比用,不代表一般情况下MySQL的性能就这么高,因为为了能够对比,测试时做了很多准备工作,测试操作也是比较特殊的

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

InnoDB uses redologs and undologs to ensure data consistency and reliability. 1.redologs record data page modification to ensure crash recovery and transaction persistence. 2.undologs records the original data value and supports transaction rollback and MVCC.

Compared with other programming languages, MySQL is mainly used to store and manage data, while other languages such as Python, Java, and C are used for logical processing and application development. MySQL is known for its high performance, scalability and cross-platform support, suitable for data management needs, while other languages have advantages in their respective fields such as data analytics, enterprise applications, and system programming.

MySQL index cardinality has a significant impact on query performance: 1. High cardinality index can more effectively narrow the data range and improve query efficiency; 2. Low cardinality index may lead to full table scanning and reduce query performance; 3. In joint index, high cardinality sequences should be placed in front to optimize query.

The basic operations of MySQL include creating databases, tables, and using SQL to perform CRUD operations on data. 1. Create a database: CREATEDATABASEmy_first_db; 2. Create a table: CREATETABLEbooks(idINTAUTO_INCREMENTPRIMARYKEY, titleVARCHAR(100)NOTNULL, authorVARCHAR(100)NOTNULL, published_yearINT); 3. Insert data: INSERTINTObooks(title, author, published_year)VA

MySQL is suitable for web applications and content management systems and is popular for its open source, high performance and ease of use. 1) Compared with PostgreSQL, MySQL performs better in simple queries and high concurrent read operations. 2) Compared with Oracle, MySQL is more popular among small and medium-sized enterprises because of its open source and low cost. 3) Compared with Microsoft SQL Server, MySQL is more suitable for cross-platform applications. 4) Unlike MongoDB, MySQL is more suitable for structured data and transaction processing.

MySQL efficiently manages structured data through table structure and SQL query, and implements inter-table relationships through foreign keys. 1. Define the data format and type when creating a table. 2. Use foreign keys to establish relationships between tables. 3. Improve performance through indexing and query optimization. 4. Regularly backup and monitor databases to ensure data security and performance optimization.

InnoDBBufferPool reduces disk I/O by caching data and indexing pages, improving database performance. Its working principle includes: 1. Data reading: Read data from BufferPool; 2. Data writing: After modifying the data, write to BufferPool and refresh it to disk regularly; 3. Cache management: Use the LRU algorithm to manage cache pages; 4. Reading mechanism: Load adjacent data pages in advance. By sizing the BufferPool and using multiple instances, database performance can be optimized.
